Muutke küpsiste eelistusi

E-raamat: Index Analysis: Approach Theory at Work

Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 55,56 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The featured review of the AMS describes the author’s earlier work in the field of approach spaces as, ‘A landmark in the history of general topology’. In this book, the author has expanded this study further and taken it in a new and exciting direction.

The number of conceptually and technically different systems which characterize approach spaces is increased and moreover their uniform counterpart, uniform gauge spaces, is put into the picture. An extensive study of completions, both for approach spaces and for uniform gauge spaces, as well as compactifications for approach spaces is performed. A paradigm shift is created by the new concept of index analysis.

Making use of the rich intrinsic quantitative information present in approach structures, a technique is developed whereby indices are defined that measure the extent to which properties hold, and theorems become inequalities involving indices; therefore vastly extending the realm of applicability of many classical results. The theory is then illustrated in such varied fields as topology, functional analysis, probability theory, hyperspace theory and domain theory. Finally a comprehensive analysis is made concerning the categorical aspects of the theory and its links with other topological categories.

Index Analysis will be useful for mathematicians working in category theory, topology, probability and statistics, functional analysis, and theoretical computer science.

1 Approach Spaces
1(90)
1.1 The Structures
1(32)
1.2 The Objects
33(34)
1.3 The Morphisms: Contractions
67(12)
1.4 Closed and Open Expansions and Proper Contractions
79(8)
1.5 Comments
87(4)
2 Topological and Metric Approach Spaces
91(22)
2.1 Topological Approach Spaces
91(3)
2.2 Embedding Top in App
94(4)
2.3 (Quasi-)Metric Approach Spaces
98(3)
2.4 Embedding qMet in App
101(9)
2.5 Comments
110(3)
3 Approach Invariants
113(36)
3.1 Uniformity and Symmetry
114(12)
3.2 Weak Adjointness
126(6)
3.3 Separation
132(8)
3.4 Countability
140(4)
3.5 Completeness
144(3)
3.6 Comments
147(2)
4 Index Analysis
149(48)
4.1 Morphism- and Object-Indices
150(3)
4.2 AppSet-Morphism-Indices
153(7)
4.3 Compactness Indices
160(24)
4.4 Local Compactness Index
184(5)
4.5 Connectedness Index
189(4)
4.6 Comments
193(4)
5 Uniform Gauge Spaces
197(26)
5.1 The Structures, Objects and Morphisms
198(3)
5.2 Embedding Unif and Met in UG
201(3)
5.3 The Relation Between UAp and UG
204(1)
5.4 Indices in Uniform Gauge Spaces
205(10)
5.5 Quasi-UG Spaces, the Non-symmetric Variant
215(5)
5.6 Comments
220(3)
6 Extensions of Spaces and Morphisms
223(26)
6.1 Completion in UAp
224(8)
6.2 Completeness and Completion in UG
232(5)
6.3 Compactification
237(9)
6.4 Comments
246(3)
7 Approach Theory Meets Topology
249(20)
7.1 Function Spaces
249(13)
7.2 The Cech-Stone Compactification
262(5)
7.3 Comments
267(2)
8 Approach Theory Meets Functional Analysis
269(30)
8.1 Normed Spaces and Their Duals
269(16)
8.2 Locally Convex Spaces
285(11)
8.3 Comments
296(3)
9 Approach Theory Meets Probability
299(38)
9.1 Spaces of Probability Measures
300(9)
9.2 Spaces of Random Variables
309(8)
9.3 Prokhorov's Theorem
317(4)
9.4 An Indexed Central Limit Theorem in One Dimension
321(12)
9.5 Comments
333(4)
10 Approach Theory Meets Hyperspaces
337(26)
10.1 The Wijsman Structure
338(6)
10.2 The Proximal Structures
344(8)
10.3 The Vietoris Structure
352(9)
10.4 Comments
361(2)
11 Approach Theory Meets DCPO's and Domains
363(26)
11.1 Basic Structures
364(6)
11.2 Quantification of Algebraic Domains
370(6)
11.3 Quantification of Arbitrary Domains
376(3)
11.4 Fixed Points for Contractive Functions
379(6)
11.5 Comments
385(4)
12 Categorical Considerations
389(42)
12.1 Stable Subcategories of App, qMet and Met
390(11)
12.2 A Quasi-topos Supercategory of App
401(5)
12.3 The Extensional Topological Hull of App
406(3)
12.4 The Cartesian Closed Topological Hull of PrAp
409(5)
12.5 The Quasi-topos Hull of App
414(1)
12.6 The Cartesian Closed Topological Hull of App
415(9)
12.7 A Lax-Algebraic Characterization of App
424(4)
12.8 Comments
428(3)
Appendix A Formulas 431(4)
Appendix B Symbols 435(4)
References 439(16)
Index 455
Robert Lowen is an author of more than 140 journal publications and four books, Promotor of 16 PhD theses, Founding Editor and Editor-in-Chief of Applied Categorical Structures, Associate Editor of 3 other mathematical journals, Member of the Scientific Committees of national and several international Science Foundations.