Muutke küpsiste eelistusi

E-raamat: Induced Representations of Locally Compact Groups

(Dalhousie University, Nova Scotia), (Universität Paderborn, Germany)
  • Formaat - EPUB+DRM
  • Hind: 109,90 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

"Locally compact groups arise in many diverse areas of mathematics, the physical sciences, and engineering and the presence of the group is usually felt through unitary representations of the group. This observation underlies the importance of understanding such representations and how they may be constructed, combined, or decomposed. Of particular importance are the irreducible unitary representations. In the middle of the last century, G.W. Mackey initiated a program to develop a systematic method for identifying all the irreducible unitary representations of a given locally compact group G. We denote the set of all unitary equivalence classes of irreducible unitary representations of G by G. Mackey's methods are only effective when G has certain restrictive structural characteristics; nevertheless, time has shown that many of the groups that arise in important problems are appropriate for Mackey's approach. The program Mackey initiated received contributions from many researchers with some of the mostsubstantial advances made by R.J. Blattner and J.M.G. Fell. Fell'swork is particularly important in studying Gas a topological space. At the core of this program is the inducing construction, which is a method of building a unitary representation of a group from a representation of a subgroup"--

Arvustused

' [ a] nicely written book ' Zentralblatt MATH

Muu info

A comprehensive presentation of the theories of induced representations and Mackey analysis applied to a wide variety of groups.
Preface ix
1 Basics
1(44)
1.1 Locally compact groups
1(5)
1.2 Examples
6(6)
1.3 Coset spaces and quasi-invariant measures
12(9)
1.4 Representations
21(6)
1.5 Representations of L1 (G) and functions of positive type
27(8)
1.6 C*-algebras and weak containment of representations
35(4)
1.7 Abelian locally compact groups
39(5)
1.8 Notes and references
44(1)
2 Induced representations
45(69)
2.1 Inducing from an open subgroup
46(5)
2.2 Conditions for irreducibility of induced representations
51(10)
2.3 The induced representation in general
61(9)
2.4 Other realizations and positive definite measures
70(10)
2.5 The affine group and SL(2, R)
80(7)
2.6 Some basic properties of induced representations
87(9)
2.7 Induction in stages
96(5)
2.8 Tensor products of induced representations
101(6)
2.9 Frobenius reciprocity
107(5)
2.10 Notes and references
112(2)
3 The imprimitivity theorem
114(26)
3.1 Systems of imprimitivity
114(6)
3.2 Induced systems of imprimitivity
120(5)
3.3 The imprimitivity theorem
125(3)
3.4 Proof of the imprimitivity theorem: the general case
128(10)
3.5 Notes and references
138(2)
4 Mackey analysis
140(63)
4.1 Mackey analysis for almost abelian groups
141(4)
4.2 Orbits in the dual of an abelian normal subgroup
145(9)
4.3 Mackey analysis for abelian normal subgroups
154(8)
4.4 Examples: some solvable groups
162(7)
4.5 Examples: action by compact groups
169(4)
4.6 Limitations on Mackey's theory
173(4)
4.7 Cocycles and cocycle representations
177(7)
4.8 Mackey's theory for a nonabelian normal subgroup
184(17)
4.9 Notes and references
201(2)
5 Topologies on dual spaces
203(66)
5.1 The inner hull-kernel topology
204(10)
5.2 The subgroup C*-algebra
214(9)
5.3 Subgroup representation topology and functions of positive type
223(7)
5.4 Continuity of inducing and restricting representations
230(5)
5.5 Examples: nilpotent and solvable groups
235(9)
5.6 The topology on the dual of a motion group
244(9)
5.7 Examples: motion groups
253(5)
5.8 The primitive ideal space of a two-step nilpotent group
258(8)
5.9 Notes and references
266(3)
6 Topological Frobenius properties
269(36)
6.1 Amenability and induced representations
270(7)
6.2 Basic definitions and inheritance properties
277(5)
6.3 Motion groups
282(5)
6.4 Property (FP) for discrete groups
287(7)
6.5 Nilpotent groups
294(9)
6.6 Notes and references
303(2)
7 Further applications
305(28)
7.1 Asymptotic properties of irreducible representations of motion groups
305(5)
7.2 Projections in L1 (G)
310(19)
7.3 Generalizations of the wavelet transform
329(3)
7.4 Notes and references
332(1)
Bibliography 333(7)
Index 340
Eberhard Kaniuth is Professor Emeritus at the University of Paderborn, Germany. Keith F. Taylor is Associate Vice-President Academic and a Professor in the Department of Mathematics and Statistics at Dalhousie University, Nova Scotia.