Muutke küpsiste eelistusi

E-raamat: Inductive Logic Programming: 24th International Conference, ILP 2014, Nancy, France, September 14-16, 2014, Revised Selected Papers

Edited by , Edited by
  • Formaat - PDF+DRM
  • Hind: 49,39 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book constitutes the thoroughly refereed post-conference proceedings of the 24rd International Conference on Inductive Logic Programming, ILP 2014, held in Nancy, France, in September 2013.The 14 revised papers presented were carefully reviewed and selected from 41 submissions. The papers focus on topics such as the inducing of logic programs, learning from data represented with logic, multi-relational machine learning, learning from graphs, and applications of these techniques to important problems in fields like bioinformatics, medicine, and text mining.

Reframing on Relational Data.- Inductive Learning using Constraint-driven Bias.- Nonmonotonic Learning in Large Biological Networks.- Construction of Complex Aggregates with Random Restart Hill-Climbing.- Logical minimisation of meta-rules within Meta-Interpretive Learning.- Goal and plan recognition via parse trees using prefix and infix probability computation.- Effectively creating weakly labeled training examples via approximate domain knowledge.- Learning Prime Implicant Conditions From Interpretation Transition.- Statistical Relational Learning for Handwriting Recognition.- The Most Probable Explanation for Probabilistic Logic Programs with Annotated Disjunctions.- Towards machine learning of predictive models from ecological data.- PageRank, ProPPR, and Stochastic Logic Programs.- Complex aggregates over clusters of elements.- On the Complexity of Frequent Subtree Mining in Very Simple Structures.

Reframing on Relational Data.- Inductive Learning using Constraint-driven Bias.- Nonmonotonic Learning in Large Biological Networks.- Construction of Complex Aggregates with Random Restart Hill-Climbing.- Logical minimisation of meta-rules within Meta-Interpretive Learning.- Goal and plan recognition via parse trees using prefix and infix probability computation.- Effectively creating weakly labeled training examples via approximate domain knowledge.- Learning Prime Implicant Conditions From Interpretation Transition.- Statistical Relational Learning for Handwriting Recognition.- The Most Probable Explanation for Probabilistic Logic Programs with Annotated Disjunctions.- Towards machine learning of predictive models from ecological data.- PageRank, ProPPR, and Stochastic Logic Programs.- Complex aggregates over clusters of elements.- On the Complexity of Frequent Subtree Mining in Very Simple Structures.