Muutke küpsiste eelistusi

E-raamat: Inductive Logic Programming: 29th International Conference, ILP 2019, Plovdiv, Bulgaria, September 3-5, 2019, Proceedings

Edited by , Edited by
  • Formaat - EPUB+DRM
  • Hind: 55,56 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book constitutes the refereed conference proceedings of the 29th International Conference on Inductive Logic Programming, ILP 2019, held in Plovdiv, Bulgaria, in September 2019.





The 11 papers presented were carefully reviewed and selected from numerous submissions. Inductive Logic Programming (ILP) is a subfield of machine learning, which originally relied on logic programming as a uniform representation language for expressing examples, background knowledge and hypotheses. Due to its strong representation formalism, based on first-order logic, ILP provides an excellent means for multi-relational learning and data mining, and more generally for learning from structured data.

CONNER: A Concurrent ILP Learner in Description Logic.- Towards Meta-interpretive Learning of Programming Language Semantics.- Towards an ILP Application in Machine Ethics.- On the Relation Between Loss Functions and T-Norms.- Rapid Restart Hill Climbing for Learning Description Logic Concepts.- Neural Networks for Relational Data.- Learning Logic Programs from Noisy State Transition Data.- A New Algorithm for Computing Least Generalization of a Set of Atoms.- LazyBum: Decision Tree Learning Using Lazy Propositionalization.- Weight Your Words: the Effect of Different Weighting Schemes on Wordification Performance.- Learning Probabilistic Logic Programs over Continuous Data.