Muutke küpsiste eelistusi

E-raamat: Inductive Logic Programming: 30th International Conference, ILP 2021, Virtual Event, October 25-27, 2021, Proceedings

Edited by , Edited by
  • Formaat - EPUB+DRM
  • Hind: 67,91 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book constitutes the refereed conference proceedings of the 30th International Conference on Inductive Logic Programming, ILP 2021, held in October 2021. Due to COVID-19 pandemic the conference was held virtually.

The 16 papers and 3 short papers presented were carefully reviewed and selected from 19 submissions. Inductive Logic Programming (ILP) is a subfield of machine learning, which originally relied on logic programming as a uniform representation language for expressing examples, background knowledge and hypotheses. Due to its strong representation formalism, based on first-order logic, ILP provides an excellent means for multi-relational learning and data mining, and more generally for learning from structured data.

Embedding Models for Knowledge Graphs Induced by Clusters of Relations
and Background Knowledge.- Fanizzi Automatic Conjecturing of P-Recursions
Using Lifted Inference.- Machine learning of microbial interactions using
Abductive ILP and Hypothesis Frequency/Compression Estimation.- Answer-Set
Programs for Reasoning about Counterfactual Interventions and Responsibility
Scores for Classification.- Reyes Synthetic Datasets and Evaluation Tools for
Inductive Neural Reasoning.- Using Domain-Knowledge to Assist Lead Discovery
in Early-Stage Drug Design.- Non-Parametric Learning of Embeddings for
Relational Data using Gaifman Locality Theorem.- Ontology Graph Embeddings
and ILP for Financial Forecasting.- Transfer learning for boosted relational
dependency networks through genetic algorithm.- Online Learning of Logic
Based Neural Network Structures.- Programmatic policy extraction by iterative
local search.- Mapping across relational domains for transfer learning with
word embeddings-based similarity.- A First Step Towards Even More Sparse
Encodings of Probability Distributions.- Feature Learning by Least
Generalization.- Learning Logic Programs Using Neural Networks by Exploiting
Symbolic Invariance.- Learning and revising dynamic temporal theories in the
full Discrete Event Calculus.- Human-like rule learning from images using
one-shot hypothesis derivation.- Generative Clausal Networks: Relational
Decision Trees as Probabilistic Circuits.- A Simulated Annealing
Meta-heuristic for Concept Learning in Description Logics.