Muutke küpsiste eelistusi

E-raamat: Inductive Logic Programming: 32nd International Conference, ILP 2023, Bari, Italy, November 13-15, 2023, Proceedings

Edited by , Edited by , Edited by
  • Formaat - PDF+DRM
  • Hind: 49,39 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book constitutes the refereed proceedings of the 32nd International Conference on Inductive Logic Programming, ILP 2023, held in Bari, Italy, during November 13–15, 2023.

The 11 full papers and 1 short paper included in this book were carefully reviewed and selected from 18 submissions. They cover all aspects of learning in logic, multi-relational data mining, statistical relational learning, graph and tree mining, learning in other (non-propositional) logic-based knowledge representation frameworks, exploring intersections to statistical learning and other probabilistic approaches.

Declarative Sequential Pattern Mining in ASP.- Extracting Rules from ML
models in Angluins Style.- A Constrained Optimization Approach to Set
the Parameters of Probabilistic Answer Set Programs.- Regularization in
Probabilistic Inductive Logic Programming.- Towards ILP-based LTLf passive
learning.- Learning Strategies of Inductive Logic Programming Using
Reinforcement Learning.- Select first, transfer later: choosing proper
datasets for statistical relational transfer learning.- GNN based Extraction
of Minimal Unsatisfiable Subsets.- What Do Counterfactuals Say about the
World? Reconstructing Probabilistic Logic Programs from Answers to What if?
Queries.- Few-shot learning of diagnostic rules for neurodegenerative
diseases using Inductive Logic Programming.- An Experimental Overview of
Neural-Symbolic Systems.- Statistical relational structure learning with
scaled weight parameters.- A Review of Inductive Logic Programming
Applications for Robotic Systems.- Meta Interpretive Learning from Fractal
images.