Muutke küpsiste eelistusi

E-raamat: Industrial Approaches in Vibration-Based Condition Monitoring

(University of Manchester, Manchester, United Kingdom)
  • Formaat: 254 pages
  • Ilmumisaeg: 21-Jan-2020
  • Kirjastus: CRC Press
  • ISBN-13: 9781351377300
  • Formaat - EPUB+DRM
  • Hind: 59,79 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 254 pages
  • Ilmumisaeg: 21-Jan-2020
  • Kirjastus: CRC Press
  • ISBN-13: 9781351377300

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Vibration-based condition monitoring (VCM) is a well-accepted approach in industries for early detection of any defect, thereby triggering the maintenance process and ultimately reducing overheads and plant downtime. A number of vibration instruments, data analyzer and related hardware and software codes are developed to meet the industry requirements. This book aims to address issues faced by VCM professionals, such as frequency range estimation for vibration measurements, sensors, data collection and data analyzer including related parameters which are explained through step-by-step approaches. Each chapter is written in the tutorial style with experimental and/or industrial examples for clear understanding.
Preface xiii
Author xv
Chapter 1 Introduction
1(10)
1.1 Condition Monitoring
1(1)
1.2 Condition Monitoring Techniques
1(3)
1.3 Condition-Based Maintenance
4(5)
1.3.1 Lead-Time-to-Maintenance (LTM)
5(4)
1.4 Summary
9(2)
Chapter 2 Simple Vibration Theoretical Concept
11(24)
2.1 Equation of Motion
11(2)
2.2 Damped System
13(5)
2.2.1 Equation of Motion for Free Vibration
14(1)
2.2.2 Critically Damped System
15(1)
2.2.3 Over Damped System
15(1)
2.2.4 Under Damped System
16(2)
2.3 Forced Vibration
18(5)
2.3.1 Example 2.1: An SDOF System
22(1)
2.4 Concept of Modeshapes
23(2)
2.5 Machine Vibration
25(8)
2.5.1 Rotor Dynamics
25(2)
2.5.2 Unbalance Responses
27(5)
2.5.3 Machine Faults
32(1)
2.6 Summary
33(1)
References
33(2)
Chapter 3 Vibration-Based Condition Monitoring and Fault Diagnosis: Step-by-Step Approach
35(10)
3.1 Introduction
35(1)
3.2 Different Stages of Vibration Measurements and Monitoring
35(8)
3.2.1 Bath Tub Concept
35(1)
3.2.2 Stage 1---Machine Installation and Commissioning
35(3)
3.2.3 Stage 2---Machine Operation
38(4)
3.2.4 Stage 3---Aged Machines
42(1)
3.3 Summary
43(1)
References
43(2)
Chapter 4 Vibration Instruments and Measurement Steps
45(28)
4.1 Introduction
45(1)
4.2 Sensors and Their Mounting Approach
45(10)
4.2.1 Displacement Sensor
45(2)
4.2.2 Velocity Sensor
47(1)
4.2.3 Acceleration Sensor
48(5)
4.2.4 Tacho Sensor
53(2)
4.3 Vibration Measurement
55(15)
4.3.1 A Typical Measurement Setup
55(2)
4.3.2 Steps Involved in the Data Collection
57(2)
4.3.3 Instrument Calibration and Specifications
59(2)
4.3.4 Concept of Sampling Frequency
61(1)
4.3.5 Aliasing Affect and Anti-aliasing Filter
61(4)
4.3.5.1 Observations
65(1)
4.3.6 Concept of Nyquist Frequency, fq and the Useful Upper Frequency Limit, fu
66(1)
4.3.7 Analog-to-Digital Conversion (ADC)
67(3)
4.4 Conversion of the Measured Data into the Mechanical Unit
70(1)
4.5 Summary
71(1)
References
71(2)
Chapter 5 Signal Processing
73(40)
5.1 Time Signal
73(9)
5.1.1 Filters
73(1)
5.1.2 Amplitude of Vibration
74(2)
5.1.3 Integration of Time Domain Signal
76(2)
5.1.4 Statistical Parameters
78(1)
5.1.5 Comparison between CF and Kurtosis
79(3)
5.2 Fourier Transformation (FT)
82(10)
5.2.1 Example 5.1: A Sine Wave Signal
83(1)
5.2.2 Steps Involved for the Computation of FT
84(3)
5.2.3 Importance of Frequency Resolution in Spectrum Analysis
87(1)
5.2.4 Leakage
88(1)
5.2.5 Window Functions
89(3)
5.3 Computation of Power Spectral Density (PSD)
92(7)
5.3.1 Averaging Process
92(2)
5.3.2 Concept of Overlap in the Averaging Process
94(2)
5.3.3 Example 5.2: An Experimental Rig
96(1)
5.3.4 Example 5.3: An Industrial Blower
96(3)
5.4 Conversion of Acceleration Spectrum to Displacement Spectrum and Vice Versa
99(1)
5.5 Short Time Fourier Transformation (STFT)
100(3)
5.5.1 Example 5.4: An Experimental Rig
101(1)
5.5.2 Example 5.5: An Industrial Centrifugal Pump
101(2)
5.6 Correlation between Two Signals
103(6)
5.6.1 Cross Power Spectrum
103(1)
5.6.2 Transfer Function (Frequency Response Function)
104(1)
5.6.3 Ordinary Coherence
104(1)
5.6.4 Example 5.6: Two Simulated Signals with Noise
105(2)
5.6.5 Example 5.7: Laboratory Experiments
107(2)
5.7 Concept of Envelope Analysis
109(2)
5.8 Summary
111(1)
References
111(2)
Chapter 6 Vibration Data Presentation Formats
113(8)
6.1 Introduction
113(1)
6.2 Normal Operation Condition
113(4)
6.2.1 Overall Vibration Amplitude
113(1)
6.2.2 Vibration Spectrum
113(2)
6.2.3 The Amplitude---Phase versus Time Plot
115(1)
6.2.4 The Polar Plot
115(1)
6.2.5 The Orbit Plot
116(1)
6.3 Transient Operation Conditions
117(3)
6.3.1 The 3D Waterfall Plot of Spectra
117(1)
6.3.2 The Shaft Centerline Plot
118(1)
6.3.3 The Orbit Plot
118(1)
6.3.4 The Bode Plot
119(1)
6.4 Summary
120(1)
References
120(1)
Chapter 7 Vibration Monitoring, Trending Analysis and Fault Detection
121(38)
7.1 Introduction
121(4)
7.2 Types of Faults
125(1)
7.3 Rotor Faults Detection
125(4)
7.3.1 Mass Unbalance
125(1)
7.3.2 Shaft Bow or Bend
126(1)
7.3.3 Misalignment
127(1)
7.3.4 Shaft Crack
128(1)
7.3.5 Shaft Rub
128(1)
7.4 Other Machine Fault Detection
129(1)
7.4.1 Mechanical Looseness
129(1)
7.4.2 Blade Passing Frequency (BPF)
129(1)
7.4.3 Blade Vibration and Blade Health Monitoring (BHM)
129(1)
7.4.4 Electric Motor Defects
129(1)
7.5 Gearbox Fault Detection
130(7)
7.6 Anti-friction Bearing Fault Detection
137(6)
7.6.1 Crest Factor (CF)
141(1)
7.6.2 Kurtosis(Ku)
141(1)
7.6.3 Envelope Analysis
142(1)
7.7 Experimental Examples
143(4)
7.7.1 Example 7.1---Roller Bearing Defect
143(1)
7.7.2 Example 7.2---Rotor Faults
144(3)
7.8 Industrial Examples
147(4)
7.8.1 Example 7.3---Fan with Unbalance Problem
147(1)
7.8.2 Example 7.4---Gearbox Fault
148(3)
7.9 Machines Having Fluid Bearings
151(2)
7.10 Field Rotor Balancing
153(4)
7.10.1 Single Plane Balancing---Graphical Approach
153(2)
7.10.2 Single Plane Balancing---Mathematical Approach
155(2)
7.11 Summary
157(1)
References
157(2)
Chapter 8 Experimental Modal Analysis
159(34)
8.1 Experimental Procedure
159(3)
8.1.1 Impulsive Load Using the Instrumented Hammer
159(3)
8.2 Modal Analysis
162(8)
8.3 Experimental Examples
170(13)
8.3.1 Example 8.1---A Clamped-Clamped Beam
170(8)
8.3.2 Example 8.2---Experimental Rotating Rig-1
178(3)
8.3.3 Example 8.3---Experimental Rotating Rig-2
181(2)
8.4 Industrial Examples
183(8)
8.4.1 Example 8.4---Horizontal Centrifugal Pump
183(3)
8.4.2 Example 8.5---Vertical Centrifugal Pump
186(2)
8.4.3 Example 8.6---Wind Turbine
188(3)
8.5 Summary
191(1)
References
191(2)
Chapter 9 Operational Deflection Shape (ODS)
193(16)
9.1 Simple Theoretical Concept
193(5)
9.2 Industrial Examples
198(9)
9.2.1 Example 9.1---Steam Turbo-Generator (TG) Set
198(4)
9.2.2 Example 9.2---Gearbox Failure
202(2)
9.2.3 Example 9.3---Blower with Frequent Bearing Failure
204(3)
9.3 Summary
207(1)
References
207(2)
Chapter 10 Shaft Torsional Vibration Measurement
209(10)
10.1 Measurement Approach
209(1)
10.2 Extraction of Torsional Vibration Signal
210(3)
10.2.1 Time Domain Zero-Crossing Approach
210(2)
10.2.2 Demodulation Approach
212(1)
10.3 Experimental Examples
213(5)
10.3.1 Example 10.1---Blade Vibration
213(3)
10.3.2 Example 10.2---A Diesel Engine
216(2)
10.4 Summary
218(1)
References
218(1)
Chapter 11 Selection of Transducers and Data Analyzer for a Machine
219(6)
11.1 Introduction
219(1)
11.2 Calculation of Machine Faults Frequencies
219(2)
11.3 Selection of Accelerometer
221(1)
11.4 Analysis Parameters
221(1)
11.4.1 Time Domain Analyses
222(1)
11.4.2 Frequency Domain Analyses
222(1)
11.4.3 Time-Frequency Analyses
222(1)
11.5 Features Required in the Data Analyzer
222(2)
11.5.1 Specifications
223(1)
11.5.2 Data Analysis Capabilities
223(1)
11.5.3 Data Trending and Storage
224(1)
11.6 Summary
224(1)
Chapter 12 Future Trend in VCM
225(8)
12.1 Introduction
225(2)
12.1.1 Future IIoT-Based CVCM Approach
227(1)
12.2 Approach 1: Suitable for Existing Old Plants
227(2)
12.3 Approach 2: Suitable for New Plants
229(1)
12.4 Summary
230(1)
References
231(2)
Index 233
Jyoti K. Sinha (BSc (Mech), MTech (Aero), PhD, CEng, FIMechE) is Programme Director of Reliability Engineering and Asset Management (REAM) MSc course, Head, Dynamics Laboratory, and Head of Structures, Health and Maintenance (SHM) Group, School of Engineering, The University of Manchester, Manchester, M13 9PL, UK.



From the beginning (1989) of the professional career, Prof. Sinha was doing research in Vibration and Structural Dynamics, including Health Monitoring techniques. Prof. Sinha was also extensively involved in the development of a number of industrial innovative vibration-based techniques related to rotating machines, equipment and structural components. Prof. Sinha also received the prestigious award "BOYSCAST (Better Opportunity for Young Scientist in a Chosen Area of Science and Technology) Fellowship" in 1999 from the Department of Science and Technology, Government of India for my outstanding work in solving a number of complex vibration related problems to enhance plant reliability and reduce maintenance overhead of the Nuclear Power Plants. Prof. Sinha moved to academia in 2005 after 16 years of industrial experience and then joined the University of Manchester, UK in January 2007. Since then Prof. Sinha has widen his research activities



Prof. Sinha is internationally well-known experts in Vibration-based Condition Monitoring and Maintenance of Machines and Structures. He is involved in and solved a number of industrial vibration problems of machines and structures by in-situ vibration measurements and analysis in many plants in last 31 years. Prof. Sinha is the author of more than 250 publications (books, Journals, conferences, books, edited book/conference proceedings and technical reports) and gave a number of keynote/invited lectures around the world.