Preface |
|
xiii | |
Author |
|
xv | |
|
|
1 | (10) |
|
|
1 | (1) |
|
1.2 Condition Monitoring Techniques |
|
|
1 | (3) |
|
1.3 Condition-Based Maintenance |
|
|
4 | (5) |
|
1.3.1 Lead-Time-to-Maintenance (LTM) |
|
|
5 | (4) |
|
|
9 | (2) |
|
Chapter 2 Simple Vibration Theoretical Concept |
|
|
11 | (24) |
|
|
11 | (2) |
|
|
13 | (5) |
|
2.2.1 Equation of Motion for Free Vibration |
|
|
14 | (1) |
|
2.2.2 Critically Damped System |
|
|
15 | (1) |
|
|
15 | (1) |
|
2.2.4 Under Damped System |
|
|
16 | (2) |
|
|
18 | (5) |
|
2.3.1 Example 2.1: An SDOF System |
|
|
22 | (1) |
|
2.4 Concept of Modeshapes |
|
|
23 | (2) |
|
|
25 | (8) |
|
|
25 | (2) |
|
2.5.2 Unbalance Responses |
|
|
27 | (5) |
|
|
32 | (1) |
|
|
33 | (1) |
|
|
33 | (2) |
|
Chapter 3 Vibration-Based Condition Monitoring and Fault Diagnosis: Step-by-Step Approach |
|
|
35 | (10) |
|
|
35 | (1) |
|
3.2 Different Stages of Vibration Measurements and Monitoring |
|
|
35 | (8) |
|
|
35 | (1) |
|
3.2.2 Stage 1---Machine Installation and Commissioning |
|
|
35 | (3) |
|
3.2.3 Stage 2---Machine Operation |
|
|
38 | (4) |
|
3.2.4 Stage 3---Aged Machines |
|
|
42 | (1) |
|
|
43 | (1) |
|
|
43 | (2) |
|
Chapter 4 Vibration Instruments and Measurement Steps |
|
|
45 | (28) |
|
|
45 | (1) |
|
4.2 Sensors and Their Mounting Approach |
|
|
45 | (10) |
|
4.2.1 Displacement Sensor |
|
|
45 | (2) |
|
|
47 | (1) |
|
4.2.3 Acceleration Sensor |
|
|
48 | (5) |
|
|
53 | (2) |
|
4.3 Vibration Measurement |
|
|
55 | (15) |
|
4.3.1 A Typical Measurement Setup |
|
|
55 | (2) |
|
4.3.2 Steps Involved in the Data Collection |
|
|
57 | (2) |
|
4.3.3 Instrument Calibration and Specifications |
|
|
59 | (2) |
|
4.3.4 Concept of Sampling Frequency |
|
|
61 | (1) |
|
4.3.5 Aliasing Affect and Anti-aliasing Filter |
|
|
61 | (4) |
|
|
65 | (1) |
|
4.3.6 Concept of Nyquist Frequency, fq and the Useful Upper Frequency Limit, fu |
|
|
66 | (1) |
|
4.3.7 Analog-to-Digital Conversion (ADC) |
|
|
67 | (3) |
|
4.4 Conversion of the Measured Data into the Mechanical Unit |
|
|
70 | (1) |
|
|
71 | (1) |
|
|
71 | (2) |
|
Chapter 5 Signal Processing |
|
|
73 | (40) |
|
|
73 | (9) |
|
|
73 | (1) |
|
5.1.2 Amplitude of Vibration |
|
|
74 | (2) |
|
5.1.3 Integration of Time Domain Signal |
|
|
76 | (2) |
|
5.1.4 Statistical Parameters |
|
|
78 | (1) |
|
5.1.5 Comparison between CF and Kurtosis |
|
|
79 | (3) |
|
5.2 Fourier Transformation (FT) |
|
|
82 | (10) |
|
5.2.1 Example 5.1: A Sine Wave Signal |
|
|
83 | (1) |
|
5.2.2 Steps Involved for the Computation of FT |
|
|
84 | (3) |
|
5.2.3 Importance of Frequency Resolution in Spectrum Analysis |
|
|
87 | (1) |
|
|
88 | (1) |
|
|
89 | (3) |
|
5.3 Computation of Power Spectral Density (PSD) |
|
|
92 | (7) |
|
|
92 | (2) |
|
5.3.2 Concept of Overlap in the Averaging Process |
|
|
94 | (2) |
|
5.3.3 Example 5.2: An Experimental Rig |
|
|
96 | (1) |
|
5.3.4 Example 5.3: An Industrial Blower |
|
|
96 | (3) |
|
5.4 Conversion of Acceleration Spectrum to Displacement Spectrum and Vice Versa |
|
|
99 | (1) |
|
5.5 Short Time Fourier Transformation (STFT) |
|
|
100 | (3) |
|
5.5.1 Example 5.4: An Experimental Rig |
|
|
101 | (1) |
|
5.5.2 Example 5.5: An Industrial Centrifugal Pump |
|
|
101 | (2) |
|
5.6 Correlation between Two Signals |
|
|
103 | (6) |
|
5.6.1 Cross Power Spectrum |
|
|
103 | (1) |
|
5.6.2 Transfer Function (Frequency Response Function) |
|
|
104 | (1) |
|
|
104 | (1) |
|
5.6.4 Example 5.6: Two Simulated Signals with Noise |
|
|
105 | (2) |
|
5.6.5 Example 5.7: Laboratory Experiments |
|
|
107 | (2) |
|
5.7 Concept of Envelope Analysis |
|
|
109 | (2) |
|
|
111 | (1) |
|
|
111 | (2) |
|
Chapter 6 Vibration Data Presentation Formats |
|
|
113 | (8) |
|
|
113 | (1) |
|
6.2 Normal Operation Condition |
|
|
113 | (4) |
|
6.2.1 Overall Vibration Amplitude |
|
|
113 | (1) |
|
|
113 | (2) |
|
6.2.3 The Amplitude---Phase versus Time Plot |
|
|
115 | (1) |
|
|
115 | (1) |
|
|
116 | (1) |
|
6.3 Transient Operation Conditions |
|
|
117 | (3) |
|
6.3.1 The 3D Waterfall Plot of Spectra |
|
|
117 | (1) |
|
6.3.2 The Shaft Centerline Plot |
|
|
118 | (1) |
|
|
118 | (1) |
|
|
119 | (1) |
|
|
120 | (1) |
|
|
120 | (1) |
|
Chapter 7 Vibration Monitoring, Trending Analysis and Fault Detection |
|
|
121 | (38) |
|
|
121 | (4) |
|
|
125 | (1) |
|
7.3 Rotor Faults Detection |
|
|
125 | (4) |
|
|
125 | (1) |
|
|
126 | (1) |
|
|
127 | (1) |
|
|
128 | (1) |
|
|
128 | (1) |
|
7.4 Other Machine Fault Detection |
|
|
129 | (1) |
|
7.4.1 Mechanical Looseness |
|
|
129 | (1) |
|
7.4.2 Blade Passing Frequency (BPF) |
|
|
129 | (1) |
|
7.4.3 Blade Vibration and Blade Health Monitoring (BHM) |
|
|
129 | (1) |
|
7.4.4 Electric Motor Defects |
|
|
129 | (1) |
|
7.5 Gearbox Fault Detection |
|
|
130 | (7) |
|
7.6 Anti-friction Bearing Fault Detection |
|
|
137 | (6) |
|
|
141 | (1) |
|
|
141 | (1) |
|
|
142 | (1) |
|
7.7 Experimental Examples |
|
|
143 | (4) |
|
7.7.1 Example 7.1---Roller Bearing Defect |
|
|
143 | (1) |
|
7.7.2 Example 7.2---Rotor Faults |
|
|
144 | (3) |
|
|
147 | (4) |
|
7.8.1 Example 7.3---Fan with Unbalance Problem |
|
|
147 | (1) |
|
7.8.2 Example 7.4---Gearbox Fault |
|
|
148 | (3) |
|
7.9 Machines Having Fluid Bearings |
|
|
151 | (2) |
|
7.10 Field Rotor Balancing |
|
|
153 | (4) |
|
7.10.1 Single Plane Balancing---Graphical Approach |
|
|
153 | (2) |
|
7.10.2 Single Plane Balancing---Mathematical Approach |
|
|
155 | (2) |
|
|
157 | (1) |
|
|
157 | (2) |
|
Chapter 8 Experimental Modal Analysis |
|
|
159 | (34) |
|
8.1 Experimental Procedure |
|
|
159 | (3) |
|
8.1.1 Impulsive Load Using the Instrumented Hammer |
|
|
159 | (3) |
|
|
162 | (8) |
|
8.3 Experimental Examples |
|
|
170 | (13) |
|
8.3.1 Example 8.1---A Clamped-Clamped Beam |
|
|
170 | (8) |
|
8.3.2 Example 8.2---Experimental Rotating Rig-1 |
|
|
178 | (3) |
|
8.3.3 Example 8.3---Experimental Rotating Rig-2 |
|
|
181 | (2) |
|
|
183 | (8) |
|
8.4.1 Example 8.4---Horizontal Centrifugal Pump |
|
|
183 | (3) |
|
8.4.2 Example 8.5---Vertical Centrifugal Pump |
|
|
186 | (2) |
|
8.4.3 Example 8.6---Wind Turbine |
|
|
188 | (3) |
|
|
191 | (1) |
|
|
191 | (2) |
|
Chapter 9 Operational Deflection Shape (ODS) |
|
|
193 | (16) |
|
9.1 Simple Theoretical Concept |
|
|
193 | (5) |
|
|
198 | (9) |
|
9.2.1 Example 9.1---Steam Turbo-Generator (TG) Set |
|
|
198 | (4) |
|
9.2.2 Example 9.2---Gearbox Failure |
|
|
202 | (2) |
|
9.2.3 Example 9.3---Blower with Frequent Bearing Failure |
|
|
204 | (3) |
|
|
207 | (1) |
|
|
207 | (2) |
|
Chapter 10 Shaft Torsional Vibration Measurement |
|
|
209 | (10) |
|
10.1 Measurement Approach |
|
|
209 | (1) |
|
10.2 Extraction of Torsional Vibration Signal |
|
|
210 | (3) |
|
10.2.1 Time Domain Zero-Crossing Approach |
|
|
210 | (2) |
|
10.2.2 Demodulation Approach |
|
|
212 | (1) |
|
10.3 Experimental Examples |
|
|
213 | (5) |
|
10.3.1 Example 10.1---Blade Vibration |
|
|
213 | (3) |
|
10.3.2 Example 10.2---A Diesel Engine |
|
|
216 | (2) |
|
|
218 | (1) |
|
|
218 | (1) |
|
Chapter 11 Selection of Transducers and Data Analyzer for a Machine |
|
|
219 | (6) |
|
|
219 | (1) |
|
11.2 Calculation of Machine Faults Frequencies |
|
|
219 | (2) |
|
11.3 Selection of Accelerometer |
|
|
221 | (1) |
|
|
221 | (1) |
|
11.4.1 Time Domain Analyses |
|
|
222 | (1) |
|
11.4.2 Frequency Domain Analyses |
|
|
222 | (1) |
|
11.4.3 Time-Frequency Analyses |
|
|
222 | (1) |
|
11.5 Features Required in the Data Analyzer |
|
|
222 | (2) |
|
|
223 | (1) |
|
11.5.2 Data Analysis Capabilities |
|
|
223 | (1) |
|
11.5.3 Data Trending and Storage |
|
|
224 | (1) |
|
|
224 | (1) |
|
Chapter 12 Future Trend in VCM |
|
|
225 | (8) |
|
|
225 | (2) |
|
12.1.1 Future IIoT-Based CVCM Approach |
|
|
227 | (1) |
|
12.2 Approach 1: Suitable for Existing Old Plants |
|
|
227 | (2) |
|
12.3 Approach 2: Suitable for New Plants |
|
|
229 | (1) |
|
|
230 | (1) |
|
|
231 | (2) |
Index |
|
233 | |