Editor Biography |
|
xv | |
|
|
xvii | |
Preface |
|
xix | |
Acknowledgments |
|
xxi | |
Foreword |
|
xxiii | |
|
1 Evolution of Automation and Development Strategy of Intelligent Manufacturing with Zero Defects |
|
|
1 | (24) |
|
|
|
1 | (1) |
|
1.2 Evolution of Automation |
|
|
1 | (13) |
|
|
1 | (2) |
|
1.2.1.1 Manufacturing Execution System (MES) |
|
|
3 | (3) |
|
1.2.1.2 Supply Chain (SC) |
|
|
6 | (1) |
|
1.2.1.3 Equipment Engineering System (EES) |
|
|
7 | (2) |
|
1.2.1.4 Engineering Chain (EC) |
|
|
9 | (1) |
|
|
10 | (1) |
|
1.2.2.1 Definition and Core Technologies of Industry 4.0 |
|
|
10 | (2) |
|
1.2.2.2 Migration from e-Manufacturing to Industry 4.0 |
|
|
12 | (1) |
|
1.2.2.3 Mass Customization |
|
|
12 | (1) |
|
1.2.3 Zero Defects - Vision of Industry 4.1 |
|
|
13 | (1) |
|
1.2.3.1 Two Stages of Achieving Zero Defects |
|
|
14 | (1) |
|
1.3 Development Strategy of Intelligent Manufacturing with Zero Defects |
|
|
14 | (4) |
|
1.3.1 Five-Stage Strategy of Yield Enhancement and Zero-Defects Assurance |
|
|
15 | (3) |
|
|
18 | (7) |
|
Appendix 1.A Abbreviation List |
|
|
18 | (2) |
|
|
20 | (5) |
|
2 Data Acquisition and Preprocessing |
|
|
25 | (44) |
|
|
|
|
|
25 | (1) |
|
|
26 | (11) |
|
2.2.1 Process Data Acquisition |
|
|
26 | (1) |
|
2.2.1.1 Sensing Signals Acquisition |
|
|
26 | (9) |
|
2.2.1.2 Manufacturing Parameters Acquisition |
|
|
35 | (1) |
|
2.2.2 Metrology Data Acquisition |
|
|
36 | (1) |
|
|
37 | (16) |
|
|
37 | (1) |
|
|
38 | (1) |
|
|
39 | (2) |
|
2.3.2.2 Wavelet Thresholding |
|
|
41 | (2) |
|
|
43 | (1) |
|
|
43 | (4) |
|
|
47 | (2) |
|
2.3.3.3 Time-Frequency Domain |
|
|
49 | (3) |
|
|
52 | (1) |
|
|
53 | (11) |
|
2.4.1 Detrending of the Thermal Effect in Strain Gauge Data |
|
|
53 | (2) |
|
2.4.2 Automated Segmentation of Signal Data |
|
|
55 | (2) |
|
2.4.3 Tool State Diagnosis |
|
|
57 | (4) |
|
2.4.4 Tool Diagnosis using Loading Data |
|
|
61 | (3) |
|
|
64 | (5) |
|
Appendix 2.A Abbreviation List |
|
|
64 | (1) |
|
Appendix 2.B List of Symbols in Equations |
|
|
65 | (2) |
|
|
67 | (2) |
|
3 Communication Standards |
|
|
69 | (60) |
|
|
|
|
|
69 | (1) |
|
3.2 Communication Standards of the Semiconductor Equipment |
|
|
69 | (38) |
|
3.2.1 Manufacturing Portion |
|
|
69 | (1) |
|
3.2.1.1 SEMI Equipment Communication Standard I (SECS-I) (SEMI E4) |
|
|
70 | (5) |
|
3.2.1.2 SEMI Equipment Communication Standard II (SECS-II) (SEMI E5) |
|
|
75 | (6) |
|
3.2.1.3 Generic Model for Communications and Control of Manufacturing Equipment (GEM) (SEMI E30) |
|
|
81 | (3) |
|
3.2.1.4 High-Speed SECS Message Services (HSMS) (SEMI E37) |
|
|
84 | (7) |
|
3.2.2 Engineering Portion (Interface A) |
|
|
91 | (2) |
|
3.2.2.1 Authentication & Authorization (A&A) (SEMI E132) |
|
|
93 | (2) |
|
3.2.2.2 Common Equipment Model (CEM) (SEMI E120) |
|
|
95 | (1) |
|
3.2.2.3 Equipment Self-Description (EqSD) (SEMI E125) |
|
|
95 | (3) |
|
3.2.2.4 Equipment Data Acquisition (EDA) Common Metadata (ECM) (SEMI E164) |
|
|
98 | (4) |
|
3.2.2.5 Data Collection Management (DCM) (SEMI E134) |
|
|
102 | (5) |
|
3.3 Communication Standards of the Industrial Devices and Systems |
|
|
107 | (18) |
|
3.3.1 Historical Roadmaps of Classic Open Platform Communications (OPC) and OPC Unified Architecture (OPC-UA) Protocols |
|
|
108 | (1) |
|
|
108 | (1) |
|
|
109 | (1) |
|
3.3.2 Fundamentals of OPC-UA |
|
|
110 | (1) |
|
|
110 | (1) |
|
|
111 | (1) |
|
|
112 | (1) |
|
3.3.2.4 System Architecture |
|
|
112 | (7) |
|
3.3.3 Example of Intelligent Manufacturing Hierarchy Applying OPC-UA Protocol |
|
|
119 | (2) |
|
3.3.3.1 Equipment Application Program (EAP) Server |
|
|
121 | (1) |
|
3.3.3.2 Use Cases of Data Manipulation |
|
|
122 | (1) |
|
3.3.3.3 Sequence Diagrams of Data Manipulation |
|
|
123 | (2) |
|
|
125 | (4) |
|
Appendix 3.A Abbreviation List |
|
|
125 | (3) |
|
|
128 | (1) |
|
4 Cloud Computing, Internet of Things (loT), Edge Computing, and Big Data Infrastructure |
|
|
129 | (40) |
|
|
|
|
|
|
129 | (2) |
|
|
131 | (11) |
|
4.2.1 Essentials of Cloud Computing |
|
|
131 | (1) |
|
4.2.2 Cloud Service Models |
|
|
132 | (2) |
|
4.2.3 Cloud Deployment Models |
|
|
134 | (3) |
|
4.2.4 Cloud Computing Applications in Manufacturing |
|
|
137 | (5) |
|
|
142 | (1) |
|
4.3 IoT and Edge Computing |
|
|
142 | (8) |
|
|
142 | (4) |
|
4.3.2 Essentials of Edge Computing |
|
|
146 | (2) |
|
4.3.3 Applications of IoT and Edge Computing in Manufacturing |
|
|
148 | (2) |
|
|
150 | (1) |
|
4.4 Big Data Infrastructure |
|
|
150 | (9) |
|
4.4.1 Application Demands |
|
|
150 | (2) |
|
4.4.2 Core Software Stack Components |
|
|
152 | (1) |
|
4.4.3 Bridging the Gap between Core Software Stack Components and Applications |
|
|
153 | (1) |
|
4.4.3.1 Hadoop Data Service (HDS) |
|
|
153 | (3) |
|
4.4.3.2 Distributed R Language Computing Service (DRS) |
|
|
156 | (3) |
|
|
159 | (1) |
|
|
159 | (10) |
|
Appendix 4.A Abbreviation List |
|
|
160 | (2) |
|
Appendix 4.B List of Symbols in Equations |
|
|
162 | (1) |
|
|
162 | (7) |
|
|
169 | (46) |
|
|
|
|
|
|
169 | (4) |
|
5.2 Fundamentals of Docker |
|
|
173 | (22) |
|
5.2.1 Docker Architecture |
|
|
173 | (1) |
|
|
174 | (1) |
|
5.2.1.2 High-Level Docker Architecture |
|
|
174 | (2) |
|
5.2.1.3 Architecture of Linux Docker Host |
|
|
176 | (1) |
|
5.2.1.4 Architecture of Windows Docker Host |
|
|
177 | (1) |
|
5.2.1.5 Architecture of Windows Server Containers |
|
|
177 | (1) |
|
5.2.1.6 Architecture of Hyper-V Containers |
|
|
178 | (1) |
|
5.2.2 Docker Operational Principles |
|
|
178 | (1) |
|
|
178 | (1) |
|
|
179 | (4) |
|
|
183 | (1) |
|
5.2.2.4 Container Network Model |
|
|
184 | (1) |
|
5.2.2.5 Docker Networking |
|
|
185 | (2) |
|
5.2.3 Illustrative Applications of Docker |
|
|
187 | (1) |
|
5.2.3.1 Workflow of Building, Shipping, and Deploying a Containerized Application |
|
|
188 | (1) |
|
5.2.3.2 Deployment of a Docker Container Running a Linux Application |
|
|
189 | (2) |
|
5.2.3.3 Deployment of a Docker Container Running a Windows Application |
|
|
191 | (3) |
|
|
194 | (1) |
|
5.3 Fundamentals of Kubernetes |
|
|
195 | (14) |
|
5.3.1 Kubernetes Architecture |
|
|
195 | (1) |
|
5.3.1.1 Kubernetes Control Plane Node |
|
|
195 | (2) |
|
5.3.1.2 Kubernetes Worker Nodes |
|
|
197 | (2) |
|
5.3.1.3 Kubernetes Objects |
|
|
199 | (1) |
|
5.3.2 Kubernetes Operational Principles |
|
|
200 | (1) |
|
|
200 | (1) |
|
5.3.2.2 High Availability and Self-Healing |
|
|
200 | (2) |
|
|
202 | (2) |
|
|
204 | (1) |
|
|
204 | (1) |
|
|
205 | (1) |
|
5.3.3 Illustrative Applications of Kubernetes |
|
|
205 | (4) |
|
|
209 | (1) |
|
|
209 | (6) |
|
Appendix 5.A Abbreviation List |
|
|
210 | (1) |
|
|
211 | (4) |
|
6 Intelligent Factory Automation (iFA) System Platform |
|
|
215 | (10) |
|
|
|
215 | (1) |
|
6.2 Architecture Design of the Advanced Manufacturing Cloud of Things (AMCoT) Framework |
|
|
215 | (3) |
|
6.3 Brief Description of the Automatic Virtual Metrology (AVM) Server |
|
|
218 | (1) |
|
6.4 Brief Description of the Baseline Predictive Maintenance (BPM) Scheme in the Intelligent Prediction Maintenance (IPM) Server |
|
|
218 | (1) |
|
6.5 Brief Description of the Key-variable Search Algorithm (KSA) Scheme in the Intelligent Yield Management (IYM) Server |
|
|
219 | (1) |
|
6.6 The iFA System Platform |
|
|
220 | (2) |
|
6.6.1 Cloud-based iFA System Platform |
|
|
220 | (1) |
|
6.6.2 Server-based iFA System Platform |
|
|
221 | (1) |
|
|
222 | (3) |
|
Appendix 6.A Abbreviation List |
|
|
222 | (2) |
|
Appendix 6.B List of Symbols |
|
|
224 | (1) |
|
|
224 | (1) |
|
7 Advanced Manufacturing Cloud of Things (AMCoT) Framework |
|
|
225 | (50) |
|
|
|
|
|
225 | (2) |
|
7.2 Key Components of AMCoT Framework |
|
|
227 | (4) |
|
7.2.1 Key Components of Cloud Part |
|
|
227 | (2) |
|
7.2.2 Key Components of Factory Part |
|
|
229 | (1) |
|
7.2.3 An Example Intelligent Manufacturing Platform Based on AMCoT Framework |
|
|
229 | (2) |
|
|
231 | (1) |
|
7.3 Framework Design of Cyber-Physical Agent (CPA) |
|
|
231 | (3) |
|
|
231 | (1) |
|
7.3.2 Framework of Containerized CPA (CPAc) |
|
|
232 | (1) |
|
|
233 | (1) |
|
7.4 Rapid Construction Scheme of CPAs (RCSCpa) Based on Docker and Kubernetes |
|
|
234 | (8) |
|
7.4.1 Background and Motivation |
|
|
234 | (1) |
|
7.4.2 System Architecture of RCScpa |
|
|
235 | (1) |
|
7.4.3 Core Functional Mechanisms of RCScpa |
|
|
236 | (1) |
|
7.4.3.1 Horizontal Auto-Scaling Mechanism |
|
|
237 | (1) |
|
7.4.3.2 Load Balance Mechanism |
|
|
238 | (1) |
|
7.4.3.3 Failover Mechanism |
|
|
238 | (1) |
|
7.4.4 Industrial Case Study of RCSCPA |
|
|
239 | (1) |
|
7.4.4.1 Experimental Setup |
|
|
239 | (1) |
|
|
239 | (3) |
|
|
242 | (1) |
|
7.5 Big Data Analytics Application Platform |
|
|
242 | (6) |
|
7.5.1 Architecture of Big Data Analytics Application Platform |
|
|
242 | (1) |
|
7.5.2 Performance Evaluation of Processing Big Data |
|
|
243 | (2) |
|
7.5.3 Big Data Analytics Application in Manufacturing - Electrical Discharge Machining |
|
|
245 | (2) |
|
|
247 | (1) |
|
7.6 Manufacturing Services Automated Construction Scheme (MSACS) |
|
|
248 | (18) |
|
7.6.1 Background and Motivation |
|
|
248 | (1) |
|
7.6.2 Design of Three-Phase Workflow of MSACS |
|
|
249 | (2) |
|
7.6.3 Architecture Design of MSACS |
|
|
251 | (1) |
|
7.6.4 Designs of Core Components |
|
|
252 | (1) |
|
7.6.4.1 Design of Key Information (KI) Extractor |
|
|
252 | (3) |
|
7.6.4.2 Design of Library Information (Lib. Info.) Template |
|
|
255 | (1) |
|
7.6.4.3 Design of Service Interface Information (SI Info.) Template |
|
|
256 | (1) |
|
7.6.4.4 Design of Web Service Package (WSP) Generator |
|
|
256 | (5) |
|
7.6.4.5 Design of Service Constructor |
|
|
261 | (1) |
|
7.6.5 Industrial Case Studies |
|
|
262 | (1) |
|
7.6.5.1 Web Graphical User Interface (GUI) of MSACS |
|
|
262 | (1) |
|
7.6.5.2 Case Study 1: Automated Construction of the AVM Cloud-based Manufacturing (CMfg) Service for Validating the Efficacy of MSACS |
|
|
262 | (2) |
|
7.6.5.3 Case Study 2: Performance Evaluation of MSACS |
|
|
264 | (1) |
|
|
265 | (1) |
|
7.7 Containerized MSACS (MSACSC) |
|
|
266 | (2) |
|
|
268 | (7) |
|
Appendix 7.A Abbreviation List |
|
|
269 | (1) |
|
Appendix 7.B Patents (AMCoT + CPA) |
|
|
270 | (1) |
|
|
271 | (4) |
|
8 Automatic Virtual Metrology (AVM) |
|
|
275 | (56) |
|
|
|
275 | (7) |
|
8.1.1 Survey of Virtual Metrology (VM)-Related Literature |
|
|
276 | (1) |
|
8.1.2 Necessity of Applying VM |
|
|
277 | (1) |
|
|
278 | (4) |
|
8.2 Evolution of VM and Invention of AVM |
|
|
282 | (5) |
|
|
283 | (4) |
|
8.3 Integrating AVM Functions into the Manufacturing Execution System (MES) |
|
|
287 | (5) |
|
8.3.1 Operating Scenarios among AVM, MES Components, and Run-to-Run (R2R) Controllers |
|
|
289 | (3) |
|
8.4 Applying AVM for Workpiece-to-Workpiece (W2W) Control |
|
|
292 | (21) |
|
8.4.1 Background Materials |
|
|
293 | (2) |
|
8.4.2 Fundamentals of Applying AVM for W2W Control |
|
|
295 | (4) |
|
8.4.3 R2R Control Utilizing VM with Reliance Index (RI) and Global Similarity Index (GSI) |
|
|
299 | (1) |
|
8.4.4 Illustrative Examples |
|
|
300 | (13) |
|
|
313 | (1) |
|
8.5 AVM System Deployment |
|
|
313 | (5) |
|
8.5.1 Automation Levels of VM Systems |
|
|
313 | (2) |
|
8.5.2 Deployment of the AVM System |
|
|
315 | (3) |
|
|
318 | (13) |
|
Appendix 8.A Abbreviation List |
|
|
319 | (2) |
|
Appendix 8.B List of Symbols in Equations |
|
|
321 | (2) |
|
Appendix 8.C Patents (AVM) |
|
|
323 | (3) |
|
|
326 | (5) |
|
9 Intelligent Predictive Maintenance (IPM) |
|
|
331 | (46) |
|
|
|
|
|
|
331 | (3) |
|
9.1.1 Necessity of Baseline Predictive Maintenance (BPM) |
|
|
332 | (1) |
|
9.1.2 Prediction Algorithms of Remaining Useful Life (RUL) |
|
|
333 | (1) |
|
9.1.3 Introducing the Factory-wide IPM System |
|
|
334 | (1) |
|
|
334 | (10) |
|
9.2.1 Important Samples Needed for Creating Target-Device Baseline Model |
|
|
337 | (1) |
|
9.2.2 Samples Needed for Creating Baseline Individual Similarity Index (ISIB) Model |
|
|
338 | (1) |
|
9.2.3 Device-Health-Index (DHI) Module |
|
|
338 | (1) |
|
9.2.4 Baseline-Error-Index (BEI) Module |
|
|
339 | (1) |
|
9.2.5 Illustration of Fault-Detection-and-Classificauon (FDC) Logic |
|
|
340 | (1) |
|
9.2.6 Flow Chart of Baseline FDC Execution Procedure |
|
|
340 | (1) |
|
9.2.7 Exponential-Curve-Fitting (ECF) RUL Prediction Module |
|
|
340 | (4) |
|
9.3 Time-Series-Prediction (TSP) Algorithm for Calculating RUL |
|
|
344 | (10) |
|
|
345 | (1) |
|
9.3.2 Problems Encountered with the ECF Model |
|
|
346 | (1) |
|
9.3.3 Details of the TSP Algorithm |
|
|
346 | (2) |
|
|
348 | (1) |
|
|
349 | (1) |
|
9.3.3.3 ARMA and ARIMA Models |
|
|
349 | (1) |
|
|
349 | (3) |
|
|
352 | (1) |
|
9.3.3.6 Death Correlation Index |
|
|
353 | (1) |
|
9.4 Factory-Wide IPM Management Framework |
|
|
354 | (5) |
|
9.4.1 Management View and Equipment View of a Factory |
|
|
354 | (1) |
|
9.4.2 Health Index Hierarchy (HIH) |
|
|
355 | (1) |
|
9.4.3 Factory-wide IPM System Architecture |
|
|
356 | (3) |
|
9.5 IPM System Implementation Architecture |
|
|
359 | (5) |
|
9.5.1 Implementation Architecture of IPMC based on Docker and Kubernetes |
|
|
359 | (2) |
|
9.5.2 Construction and Implementation of the IPMC |
|
|
361 | (3) |
|
9.6 IPM System Deployment |
|
|
364 | (3) |
|
|
367 | (10) |
|
Appendix 9.A Abbreviation List |
|
|
367 | (3) |
|
Appendix 9.B List of Symbols in Equations |
|
|
370 | (1) |
|
Appendix 9.C Patents (IPM) |
|
|
371 | (1) |
|
|
372 | (5) |
|
10 Intelligent Yield Management (IYM) |
|
|
377 | (32) |
|
|
|
|
|
377 | (4) |
|
10.1.1 Traditional Root-Cause Search Procedure of a Yield Loss |
|
|
379 | (1) |
|
|
380 | (1) |
|
10.1.3 Procedure for Finding the Root Causes of a Yield Loss by Applying the Key-variable Search Algorithm (KSA) Scheme |
|
|
380 | (1) |
|
|
381 | (20) |
|
10.2.1 Data Preprocessing Module |
|
|
382 | (1) |
|
|
382 | (1) |
|
10.2.2.1 Triple Phase Orthogonal Greedy Algorithm (TPOGA) |
|
|
382 | (2) |
|
10.2.2.2 Automated Least Absolute Shrinkage and Selection Operator (ALASSO) |
|
|
384 | (1) |
|
10.2.2.3 Reliance Index of KSA (RIK) Module |
|
|
385 | (1) |
|
10.2.3 Blind-stage Search Algorithm (BSA) Module |
|
|
386 | (1) |
|
|
387 | (3) |
|
10.2.3.2 Blind-stage Search Algorithm |
|
|
390 | (3) |
|
10.2.4 Interaction-Effect Search Algorithm (IESA) Module |
|
|
393 | (1) |
|
10.2.4.1 Interaction-Effect |
|
|
393 | (3) |
|
10.2.4.2 Interaction-Effect Search Algorithm |
|
|
396 | (5) |
|
10.3 IYM System Deployment |
|
|
401 | (1) |
|
|
402 | (7) |
|
Appendix 10.A Abbreviation List |
|
|
402 | (1) |
|
Appendix 10.B List of Symbols in Equations |
|
|
403 | (2) |
|
Appendix 10.C Patents (IYM) |
|
|
405 | (1) |
|
|
406 | (3) |
|
11 Application Cases of Intelligent Manufacturing |
|
|
409 | (107) |
|
|
|
|
|
|
|
|
409 | (1) |
|
11.2 Application Case I: Thin Film Transistor Liquid Crystal Display (TFT-LCD) Industry |
|
|
409 | (23) |
|
11.2.1 Automatic Virtual Metrology (AVM) Deployment Examples in the TFT-LCD Industry |
|
|
409 | (1) |
|
11.2.1.1 Introducing the TFT-LCD Production Tools and Manufacturing Processes for AVM Deployment |
|
|
410 | (3) |
|
11.2.1.2 AVM Deployment Types for TFT-LCD Manufacturing |
|
|
413 | (5) |
|
11.2.1.3 Illustrative Examples |
|
|
418 | (7) |
|
|
425 | (1) |
|
11.2.2 Intelligent Yield Management (IYM) Deployment Examples in the TFT-LCD Industry |
|
|
425 | (1) |
|
11.2.2.1 Introducing the TFT-LCD Production Tools and Manufacturing Processes for IYM Deployment |
|
|
425 | (1) |
|
11.2.2.2 KSA Deployment Example |
|
|
426 | (6) |
|
|
432 | (1) |
|
11.3 Application Case II: Solar Cell Industry |
|
|
432 | (21) |
|
11.3.1 Introducing the Solar Cell Manufacturing Process and Requirement Analysis of Intelligent Manufacturing |
|
|
433 | (1) |
|
11.3.2 T2T Control with AVM Deployment Examples |
|
|
434 | (1) |
|
11.3.2.1 T2T+VM Control Scheme with RI&GSI |
|
|
435 | (2) |
|
11.3.2.2 Illustrative Examples of T2T Control with AVM |
|
|
437 | (7) |
|
11.3.3 Factory-Wide Intelligent Predictive Maintenance (IPM) Deployment Examples |
|
|
444 | (1) |
|
11.3.3.1 Illustrative Examples of BPM and RUL Prediction |
|
|
444 | (7) |
|
11.3.3.2 Illustrative Example of Factory-Wide IPM System |
|
|
451 | (2) |
|
|
453 | (1) |
|
11.4 Application Case III: Semiconductor Industry |
|
|
453 | (1) |
|
11.4.1 AVM Deployment Example in the Semiconductor Industry |
|
|
453 | (1) |
|
11.4.1.1 AVM Deployment Example of the Etching Process |
|
|
454 | (2) |
|
|
456 | (1) |
|
11.4.2 IPM Deployment Examples in the Semiconductor Industry |
|
|
456 | (1) |
|
11.4.2.1 Introducing the Bumping Production Tools for IPM Deployment |
|
|
456 | (1) |
|
11.4.2.2 Illustrative Example |
|
|
456 | (4) |
|
|
460 | (1) |
|
11.4.3 IYM Deployment Examples in the Semiconductor Industry |
|
|
460 | (1) |
|
11.4.3.1 Introducing the Bumping Process of Semiconductor Manufacturing for IYM Deployment |
|
|
460 | (1) |
|
11.4.3.2 Illustrative Example |
|
|
460 | (4) |
|
|
464 | (1) |
|
11.5 Application Case IV: Automotive Industry |
|
|
464 | (14) |
|
11.5.1 AMCoT and AVM Deployment Examples in Wheel Machining Automation (WMA) |
|
|
464 | (1) |
|
11.5.1.1 Integrating GED-plus-AVM (GAVM) into WMA for Total Inspection |
|
|
464 | (2) |
|
11.5.1.2 Applying AMCoT to WMA |
|
|
466 | (3) |
|
11.5.1.3 Applying AVM in AMCoT to WMA |
|
|
469 | (3) |
|
|
472 | (1) |
|
11.5.2 Mass Customization (MC) Example for WMA |
|
|
472 | (1) |
|
11.5.2.1 Requirements of MC Production for WMA |
|
|
472 | (1) |
|
11.5.2.2 Considerations for Applying AVM in MC-Production of WMA |
|
|
473 | (1) |
|
11.5.2.3 The AVM-plus-Target-Value-Adjustment (TVA) Scheme for MC |
|
|
473 | (4) |
|
11.5.2.4 AVM-plus-TVA Deployment Example for WMA |
|
|
477 | (1) |
|
|
478 | (1) |
|
11.6 Application Case V: Aerospace Industry |
|
|
478 | (14) |
|
11.6.1 Introducing the Engine-Case (EC) Manufacturing Process |
|
|
479 | (1) |
|
11.6.1.1 Manufacturing Processes of an EC |
|
|
479 | (1) |
|
11.6.1.2 Inspection Processes of the Flange Holes |
|
|
479 | (1) |
|
11.6.1.3 Literature Reviews |
|
|
480 | (1) |
|
11.6.2 Integrating GAVM into EC Manufacturing for Total Inspection |
|
|
481 | (1) |
|
11.6.2.1 Considerations of Applying AVM in EC Manufacturing |
|
|
481 | (1) |
|
11.6.3 The DF Scheme for Estimating the Flange Deformation of an EC |
|
|
482 | (1) |
|
11.6.3.1 Probing Scenario |
|
|
482 | (1) |
|
11.6.3.2 Ellipse-like Deformation of an EC |
|
|
483 | (3) |
|
|
486 | (2) |
|
11.6.3.4 Integrating the On-Line Probing, the DF Scheme, and the AVM Prediction |
|
|
488 | (1) |
|
11.6.4 Illustrative Examples |
|
|
488 | (2) |
|
11.6.4.1 Diameter Prediction |
|
|
490 | (1) |
|
11.6.4.2 Position Prediction |
|
|
490 | (2) |
|
|
492 | (1) |
|
11.7 Application Case VI: Chemical Industry |
|
|
492 | (10) |
|
11.7.1 Introducing the Carbon-Fiber Manufacturing Process |
|
|
492 | (1) |
|
11.7.2 Three Preconditions of Applying AVM |
|
|
493 | (1) |
|
11.7.3 Challenges of Applying AVM to Carbon-Fiber Manufacturing |
|
|
494 | (1) |
|
11.7.3.1 CPA+AVM (CPAVM) Scheme for Carbon-Fiber Manufacturing |
|
|
494 | (4) |
|
11.7.3.2 AMCoT for Carbon-Fiber Manufacturing |
|
|
498 | (1) |
|
11.7.4 Illustrative Example |
|
|
498 | (1) |
|
11.7.4.1 Production Data Traceback (PDT) Mechanism for Work-in-Process (WIP) Tracking |
|
|
499 | (1) |
|
11.7.4.2 AVM for Carbon-Fiber Manufacturing |
|
|
500 | (1) |
|
|
501 | (1) |
|
11.8 Application Case VII: Bottle Industry |
|
|
502 | (6) |
|
11.8.1 Bottle Industry and Its Intelligent Manufacturing Requirements |
|
|
502 | (1) |
|
11.8.1.1 Introducing the Blow-Molding Manufacturing Process |
|
|
502 | (1) |
|
11.8.2 Applying AVM to Blow Molding Manufacturing Process |
|
|
502 | (1) |
|
11.8.3 AVM-Based Run-to-Run (R2R) Control for Blow Molding Manufacturing Process |
|
|
503 | (1) |
|
11.8.4 Illustrative Example |
|
|
504 | (3) |
|
|
507 | (1) |
|
Appendix 11.A Abbreviation List |
|
|
508 | (4) |
|
Appendix 11.B List of Symbols in Equations |
|
|
512 | (4) |
References |
|
516 | (5) |
Index |
|
521 | |