Muutke küpsiste eelistusi

E-raamat: Infinite Time Blow-Up Solutions to the Energy Critical Wave Maps Equation

Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 112,71 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

"We consider the wave maps problem with domain R2 + 1 and target S2 in the 1- equivariant, topological degree one setting. In this setting, we recall that the soliton is a harmonic map from R2 to S2, with polar angle equal to Q1(r) = 2arctan(r). By applying the scaling symmetry of the equation, Q[ lambda](r) = Q1(r[ lambda]) is also a harmonic map, and the family of all such Q[ lambda] are the unique minimizers of the harmonic map energy among finite energy, 1-equivariant, topological degree one maps. In this work, we construct infinite time blowup solutions along the Q[ lambda] family. More precisely, for b < 0, and for all [ lambda]0,0,b [ element of] C[ superscript infinity]([ 100,[ infinity])) satisfying, for some Cl, Cm,k > 0, Cl logb(t) [ less than or equal to] [ lamda]0,0,b(t) [ less than or equal to] Cm logb(t) , |[ lambda](k) 0,0,b(t)| [ less than or equal to] Cm,k tk logb+1(t) , k [ greater than or equal to] 1 t [ greater than or equal to] 100 there exists a wave map with the following properties. If ub denotes the polar angle of the wave map into S2, we have ub(t, r) = Q 1 [ lambda]b(t) (r) + v2(t, r) + ve(t, r), t [ greater than or equal to] T0 where - [ partial derivative]ttv2 + [ partial derivative]rrv2 + 1 r [ partial derivative]rv2 - v2 r2 = 0 [ parallel][ partial derivative]t(Q 1 [ lambda]b(t) + ve)[ parallel]2 L2(rdr) + [ parallel]ve r [ parallel]2 L2(rdr) + [ parallel][ partial derivative]rve[ parallel]2 L2(rdr) [ less than or equal to] C t2 log2b(t) , t [ greater than or equal to] T0 and [ lambda]b(t) = [ lambda]0,0,b(t) [ plus] O [ x in a square] 1 logb(t) [ x in a square] log(log(t))"--
Mohandas Pillai, University of California, Berkeley, CA.