Muutke küpsiste eelistusi

E-raamat: Information Algebras: Generic Structures For Inference

  • Formaat - PDF+DRM
  • Hind: 135,23 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Information usually comes in pieces, from different sources. It refers to different, but related questions. Therefore information needs to be aggregated and focused onto the relevant questions. Considering combination and focusing of information as the relevant operations leads to a generic algebraic structure for information. This book introduces and studies information from this algebraic point of view. Algebras of information provide the necessary abstract framework for generic inference procedures. They allow the application of these procedures to a large variety of different formalisms for representing information. At the same time they permit a generic study of conditional independence, a property considered as fundamental for knowledge presentation. Information algebras provide a natural framework to define and study uncertain information. Uncertain information is represented by random variables that naturally form information algebras. This theory also relates to probabilistic assumption-based reasoning in information systems and is the basis for the belief functions in the Dempster-Shafer theory of evidence.

Muu info

Springer Book Archives
1 Introduction.- 2 Valuation Algebras.- 2.1 The Framework.- 2.2 Axioms.-
2.3 Examples of Valuation Algebras.- 2.4 Partial Marginalization.- 3
Algebraic Theory.- 3.1 Congruences.- 3.2 Domain-Free Valuation Algebras.- 3.3
Subalgebras, Homomorphisms.- 3.4 Null Valuations.- 3.5 Regular Valuation
Algebras.- 3.6 Separative Valuation Algebras.- 3.7 Scaled Valuation
Algebras.- 4 Local Computation.- 4.1 Fusion Algorithm.- 4.2 Collect
Algorithm.- 4.3 Computing Multiple Marginals.- 4.4 Architectures with
Division.- 4.5 Computations in Valuation Algebras with Partial
Marginalization.- 4.6 Scaling and Updating.- 5 Conditional Independence.- 5.1
Factorization and Graphical Models.- 5.2 Conditionals in Regular Algebras.-
5.3 Conditionals in Separative Algebras.- 6 Information Algebras.- 6.1
Idempotency.- 6.2 Partial Order of Information.- 6.3 File Systems.- 6.4
Information Systems.- 6.5 Examples.- 6.6 Compact Systems.- 6.7 Mappings.- 7
Uncertain Information.- 7.1 Algebra of Random Variables.- 7.2 Probabilistic
Argumentation Systems.- 7.3 Allocations of Probability.- 7.4 Independent
Sources.- References.