Muutke küpsiste eelistusi

E-raamat: Information and Communications Technologies: Second International Libyan Conference, ILCICT 2023, Tripoli, Libya, September 4-6, 2023, Proceedings

Edited by , Edited by , Edited by , Edited by , Edited by , Edited by
  • Formaat - PDF+DRM
  • Hind: 135,23 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book constitutes the proceedings of the Second International Libyan Conference on Information and Communication Technologies, ILCICT 2023, which took place in Tripoli, Libya, in September 46, 2023.





The 26 full papers were carefully reviewed and selected from 55 submissions. The papers are organized in subject areas as follows: communication systems; computer and information systems; image processing, computer vision and internet of things.
.- Communication Systems.

.- A Hybrid Clipping and SLM Technique for PAPR Reduction in OFDM Systems.

.- AI-Driven Path Loss Optimization in 4G Networks through PSO Algorithm.

.- Topology Discovery Tool for OpenFlow Controllers.

.- Performance Analysis of Classifying URL Phishing Using Recursive Feature
Elimination.

.- Performance Evaluation Of Satellite Communication Link at Millimeter Wave
based on Rain Fade Data Measured In Libya.

.- BJT Based Voltage Reference Circuits Comparisons in 65nm CMOS Process.

.- Computer and Information Systems.

.- Solar flare classification via modified metaheuristic optimized extreme
gradient boosting.

.- Naïve Bayes Classifier with Genetic Algorithm for Phishing Website
Detection.

.- Object-Relational Database Design Approaches: A Survey of Approaches and
Techniques.

.- Event Abstration in a Forensic Timeline.

.- Innovative SQL Query Generator using an Arabic Language description.

.- Handling Imbalanced Dataset in Software Refactoring Prediction.

.- KnowAir: A Low-Cost PM2.5 sensor Citizen-Based Air Pollution Monitoring
System for Real-Time.

.- Implementation of Quranic Question Answering System Based on the BERT
Model.

.- IT Security Office: The Way Forward for IT Goverenece for Libyan
Organizations.

.- Sentiment Analysis of Libyan Middle Region Using Machine Learning with
TF-IDF and N-grams.

.- Data Quality Considerations for ERP Implementation: Techniques for
Effective Data Management.

.- Fractional Calculus Application for PID Controller of a Nuclear Power
Plant.

.- Image Processing, Computer Vision and Internet of Things.

.- Palm-print Recognition based on a Fusion of Feature Selection Techniques.

.- Predictive Analytics Based on AutoML Email Spam Detection.

.- Enhancing a System for Predicting Diabetes Utilizing Conventional Machine
Learning Approaches.

.- Enhanced Facial Expression Recognition Using Pre-trained Models and Image
Processing Techniques.

.- Identifying Bird Calls in Soundscapes Using Convolutional Neural
Networks.

.- Automated ECG Classification for Myocardial Infarction Diagnosis using CNN
and Wavelet Transform.

.- Detecting Chest Diseases with Chest X-Ray Using Convolutional Neural
Network.

.- Real Time Arabic Sign Language Recognition Using Machine Learning: A
Vision - Based Approach.