Muutke küpsiste eelistusi

E-raamat: Information Fusion in Signal and Image Processing: Major Probabilistic and Non-Probabilistic Numerical Approaches

Edited by (Ecole Nationale Supérieure des)
  • Formaat: PDF+DRM
  • Ilmumisaeg: 05-Jan-2010
  • Kirjastus: ISTE Ltd and John Wiley & Sons Inc
  • Keel: eng
  • ISBN-13: 9780470393659
  • Formaat - PDF+DRM
  • Hind: 212,36 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: PDF+DRM
  • Ilmumisaeg: 05-Jan-2010
  • Kirjastus: ISTE Ltd and John Wiley & Sons Inc
  • Keel: eng
  • ISBN-13: 9780470393659

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The contributors of these 12 papers offer overviews of the general principles as well as main numerical methods, making this suitable for those new to the field as well as for professionals seeking information on a specific subject. They start with definitions, including choosing a definition and understanding numerical and symbolic concepts, the cover fusion in signal processing and in image processing, fusion in robotics, information and knowledge representation in fusion problems, probabilistic and statistical methods, belief function theory, fuzzy sets and possibility theory, spatial information in fusion methods, multi-agent methods (including an example of an architecture and an application for the detection, recognition and identification of targets), fusion of non-simultaneous elements of information, also known as "temporal fusion." Appendices include information on theoretical background and commentary on applications. Annotation ©2008 Book News, Inc., Portland, OR (booknews.com)

The area of information fusion has grown considerably during the last few years, leading to a rapid and impressive evolution. In such fast-moving times, it is important to take stock of the changes that have occurred. As such, this books offers an overview of the general principles and specificities of information fusion in signal and image processing, as well as covering the main numerical methods (probabilistic approaches, fuzzy sets and possibility theory and belief functions).
Preface 11(2)
Isabelle Bloch
Definitions
13(12)
Isabelle Bloch
Henri Maitre
Introduction
13(1)
Choosing a definition
13(3)
General characteristics of the data
16(3)
Numerical/symbolic
19(1)
Data and information
19(1)
Processes
19(1)
Representations
20(1)
Fusion systems
20(2)
Fusion in signal and image processing and fusion in other fields
22(1)
Bibliography
23(2)
Fusion in Signal Processing
25(22)
Jean-Pierre Le Cadre
Vincent Nimier
Roger Reynaud
Introduction
25(2)
Objectives of fusion in signal processing
27(10)
Estimation and calculation of a law a posteriori
28(3)
Discriminating between several hypotheses and identifying
31(3)
Controlling and supervising a data fusion chain
34(3)
Problems and specificities of fusion in signal processing
37(6)
Dynamic control
37(5)
Quality of the information
42(1)
Representativeness and accuracy of learning and a priori information
43(1)
Bibliography
43(4)
Fusion in Image Processing
47(10)
Isabelle Bloch
Henri Maitre
Objectives of fusion in image processing
47(3)
Fusion situations
50(1)
Data characteristics in image fusion
51(3)
Constraints
54(1)
Numerical and symbolic aspects in image fusion
55(1)
Bibliography
56(1)
Fusion in Robotics
57(8)
Michele Rombaut
The necessity for fusion in robotics
57(1)
Specific features of fusion in robotics
58(3)
Constraints on the perception system
58(1)
Proprioceptive and exteroceptive sensors
58(1)
Interaction with the operator and symbolic interpretation
59(1)
Time constraints
59(2)
Characteristics of the data in robotics
61(2)
Calibrating and changing the frame of reference
61(1)
Types and levels of representation of the environment
62(1)
Data fusion mechanisms
63(1)
Bibliography
64(1)
Information and Knowledge Representation in Fusion Problems
65(12)
Isabelle Bloch
Henri Maitre
Introduction
65(1)
Processing information in fusion
65(2)
Numerical representations of imperfect knowledge
67(1)
Symbolic representation of imperfect knowledge
68(1)
Knowledge-based systems
69(4)
Reasoning modes and inference
73(1)
Bibliography
74(3)
Probabilistic and Statistical Methods
77(30)
Isabelle Bloch
Jean-Pierre Le Cadre
Henri Maitre
Introduction and general concepts
77(1)
Information measurements
77(2)
Modeling and estimation
79(1)
Combination in a Bayesian framework
80(1)
Combination as an estimation problem
80(1)
Decision
81(1)
Other methods in detection
81(1)
An example of Bayesian fusion in satellite imagery
82(2)
Probabilistic fusion methods applied to target motion analysis
84(14)
General presentation
84(11)
Multi-platform target motion analysis
95(1)
Target motion analysis by fusion of active and passive measurements
96(2)
Detection of a moving target in a network of sensors
98(3)
Discussion
101(3)
Bibliography
104(3)
Belief Function Theory
107(28)
Isabelle Bloch
General concept and philosophy of the theory
107(1)
Modeling
108(3)
Estimation of mass functions
111(5)
Modification of probabilistic models
112(2)
Modification of distance models
114(1)
A priori information on composite focal elements (disjunctions)
114(1)
Learning composite focal elements
115(1)
Introducing disjunctions by mathematical morphology
115(1)
Conjuctive combination
116(6)
Dempster's rule
116(1)
Conflict and normalization
116(2)
Properties
118(2)
Discounting
120(1)
Conditioning
120(1)
Separable mass functions
121(1)
Complexity
122(1)
Other combination modes
122(1)
Decision
122(2)
Application example in medical imaging
124
Bibliography
31(104)
Fuzzy Sets and Possibility Theory
135(64)
Isabelle Bloch
Introduction and general concepts
135(1)
Definitions of the fundamental concepts of fuzzy sets
136(6)
Fuzzy sets
136(1)
Set operations: Zadeh's original definitions
137(2)
α-cuts
139(1)
Cardinality
139(1)
Fuzzy number
140(2)
Fuzzy measures
142(5)
Fuzzy measure of a crisp set
142(1)
Examples of fuzzy measures
142(1)
Fuzzy integrals
143(2)
Fuzzy set measures
145(1)
Measures of fuzziness
145(2)
Elements of possibility theory
147(4)
Necessity and possibility
147(1)
Possibility distribution
148(2)
Semantics
150(1)
Similarities with the probabilistic, statistical and belief interpretations
150(1)
Combination operators
151(19)
Fuzzy complemntation
152(1)
Triangular norms and conorms
153(8)
Mean operators
161(4)
Symmetric sums
165(2)
Adaptive operators
167(3)
Linguistic variables
170(2)
Definition
171(1)
An example of a linguistic variable
171(1)
Modifiers
172(1)
Fuzzy and possibilistic logic
172(7)
Fuzzy logic
173(4)
Possibilistic logic
177(2)
Fuzzy modeling in fusion
179(1)
Defining membership functions of possibility distributions
180(2)
Combining and choosing the operators
182(5)
Decision
187(1)
Application examples
188(6)
Example in satellite imagery
188(4)
Example in medical imaging
192(2)
Bibliography
194(5)
Spatial Information in Fusion Methods
199(14)
Isabelle Bloch
Modeling
199(1)
The decision level
200(1)
The combination level
201(1)
Application examples
201(10)
The combination level: multi-source Markovian classification
201(1)
The modeling and decision level: fusion of structure detectors using belief function theory
202(3)
The modeling level: fuzzy fusion of spatial relations
205(6)
Bibliography
211(2)
Multi-Agent Methods: An Example of an Architecture and its Application for the Detection, Recognition and Identification of Targets
213(32)
Fabienne Ealet
Bertrand Collin
Catherine Garbay
The DRI function
214(3)
The application context
215(1)
Design constraints and concepts
216(1)
State of the art
216(1)
Proposed method: towards a vision system
217(5)
Representation space and situated agents
218(1)
Focusing and adapting
219(1)
Distribution and co-operation
220(1)
Decision and uncertainty management
221(1)
Incrementality and learning
221(1)
The multi-agent system: platform and architecture
222(2)
The developed multi-agent architecture
222(1)
Presentation of the platform used
222(2)
The control scheme
224(3)
The intra-image control cycle
224(2)
Inter-image control cycle
226(1)
The information handled by the agents
227(4)
The knowledge base
227(2)
The world model
229(2)
The results
231(10)
Direct analysis
232(3)
Indirect analysis: two focusing strategies
235(2)
Indirect analysis: spatial and temporal exploration
237(3)
Conclusion
240(1)
Bibliography
241(4)
Fusion of Non-Simultaneous Elements of Information: Temporal Fusion
245(14)
Michele Rombaut
Time variable observations
245(1)
Temporal constraints
246(1)
Fusion
247(2)
Fusion of distict sources
247(1)
Fusion of single source data
248(1)
Temporal registration
249(1)
Dating measurements
249(1)
Evolutionary models
250(2)
Single sensor prediction-combination
252(1)
Multi-sensor prediction-combination
253(4)
Conclusion
257(1)
Bibliography
257(2)
Conclusion
259(4)
Isabelle Bloch
A few achievements
259(1)
A few prospects
260(1)
Bibliography
261(2)
Appendices
263(28)
Probabilities: A Historical Perspective
263(20)
Probabilities through history
264(1)
Before 1660
264(2)
Towards the Bayesian mathematical formulation
266(2)
The predominance of the frequentist approach: the ``objectivists''
268(1)
The 20th century: a return to subjectivism
269(2)
Objectivist and subjectivist probability classes
271(1)
Fundamental postulates for an inductive logic
272(1)
Fundamental postulates
273(1)
First functional equation
274(1)
Second functional equation
275(1)
Probabilities inferred from functional equations
276(1)
Measure of uncertainty and information theory
276(1)
De Finetti and betting theory
277(3)
Bibliography
280(3)
Axiomatic Inference of the Dempster-Shafer Combination Rule
283(8)
Smets's axioms
284(2)
Inference of the combination rule
286(1)
Relation with Cox's postulates
287(2)
Bibliography
289(2)
List of Authors 291(2)
Index 293
Isabelle Bloch is Professor at the Ecole Nationale Supérieure des Télécommunications, Paris, France.