Muutke küpsiste eelistusi

E-raamat: Information Granularity, Big Data, and Computational Intelligence

Edited by , Edited by
  • Formaat: PDF+DRM
  • Sari: Studies in Big Data 8
  • Ilmumisaeg: 14-Jul-2014
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319082547
  • Formaat - PDF+DRM
  • Hind: 110,53 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Sari: Studies in Big Data 8
  • Ilmumisaeg: 14-Jul-2014
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319082547

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The recent pursuits emerging in the realm of big data processing, interpretation, collection and organization have emerged in numerous sectors including business, industry and government organizations. Data sets such as customer transactions for a mega-retailer, weather monitoring, intelligence gathering, quickly outpace the capacities of traditional techniques and tools of data analysis. The 3V (volume, variability and velocity) challenges led to the emergence of new techniques and tools in data visualization, acquisition, and serialization. Soft Computing being regarded as a plethora of technologies of fuzzy sets (or Granular Computing), neurocomputing and evolutionary optimization brings forward a number of unique features that might be instrumental to the development of concepts and algorithms to deal with big data.

This carefully edited volume provides the reader with an updated, in-depth material on the emerging principles, conceptual underpinnings, algorithms and practice of Computational Intelligence in the realization of concepts and implementation of big data architectures, analysis, and interpretation as well as data analytics. The book is aimed at a broad audience of researchers and practitioners including those active in various disciplines in which big data, their analysis and optimization are of genuine relevance. One focal point is the systematic exposure of the concepts, design methodology, and detailed algorithms. In general, the volume adheres to the top-down strategy starting with the concepts and motivation and then proceeding with the detailed design that materializes in specific algorithms and representative applications. The material is self-contained and provides the reader with all necessary prerequisites and augments some parts with a step-by-step explanation of more advanced concepts supported by a significant amount of illustrative numeric material and some application scenarios to motivate the reader and make some abstract concepts more tangible.

Part I Fundamentals
Nearest Neighbor Queries on Big Data
3(20)
Georgios Chatzimilioudis
Andreas Konstantinidis
Demetrios Zeinalipour-Yazti
Information Mining for Big Information
23(16)
Yuichi Goto
Information Granules Problem: An Efficient Solution of Real-Time Fuzzy Regression Analysis
39(24)
Azizul Azhar Ramli
Junzo Watada
Witold Pedrycz
How to Understand Connections Based on Big Data: From Cliques to Flexible Granules
63(26)
Ali Jalal-Kamali
M. Shahriar Hossain
Vladik Kreinovich
Graph-Based Framework for Evaluating the Feasibility of Transition to Maintainomics
89(32)
Bo Xing
Incrementally Mining Frequent Patterns from Large Database
121(20)
Yue-Shi Lee
Show-Jane Yen
Improved Latent Semantic Indexing-Based Data Mining Methods and an Application to Big Data Analysis of CRM
141(30)
Jianxiong Yang
Junzo Watada
The Property of Different Granule and Granular Methods Based on Quotient Space
171(20)
Yan-ping Zhang
Ling Zhang
Chenchu Xu
Towards an Optimal Task-Driven Information Granulation
191(18)
Alexander Ryjov
Unified Framework for Construction of Rule Based Classification Systems
209(22)
Han Liu
Alexander Gegov
Frederic Stahl
Multi-granular Evaluation Model Through Fuzzy Random Regression to Improve Information Granularity
231(16)
Nureize Arbaiy
Junzo Watada
Building Fuzzy Robust Regression Model Based on Granularity and Possibility Distribution
247(28)
Yoshiyuki Yabuuchi
Junzo Watada
Part II Architectures
The Role of Cloud Computing Architecture in Big Data
275(22)
Mehdi Bahrami
Mukesh Singhal
Big Data Storage Techniques for Spatial Databases: Implications of Big Data Architecture on Spatial Query Processing
297(28)
Roger Frye
Mark McKenney
The Web KnowARR Framework: Orchestrating Computational Intelligence with Graph Databases
325(24)
Edy Portmann
Patrick Kaltenrieder
Part III Case Studies
Customer Relationship Management and Big Data Mining
349(12)
Yi Hui Liang
Performance Competition for ISCBFCM and DPEI Models Under Uncontrolled Circumstances
361(14)
Jui Fang Chang
Rough Set Model Based Knowledge Acquisition of Market Movements from Economic Data
375(14)
Yoshiyuki Matsumoto
Junzo Watada
Deep Neural Network Modeling for Big Data Weather Forecasting
389(20)
James N. K. Liu
Yanxing Hu
Yulin He
Pak Wai Chan
Lucas Lai
Current Knowledge and Future Challenge for Visibility Forecasting by Computational Intelligence
409(18)
Wang-Kun Chen
Chung-Shin Yuan
Application of Computational Intelligence on Analysis of Air Quality Monitoring Big Data
427(16)
Tzu-Yi Pai
Moo-Been Chang
Shyh-Wei Chen
Index 443