Preface to the third edition |
|
xvii | |
Acknowledgements to the third edition |
|
xix | |
About the author |
|
xxi | |
|
PART I FUNDAMENTALS OF INFRARED AND TERAHERTZ DETECTION |
|
|
1 | (126) |
|
|
3 | (18) |
|
1.1 Radiometric and photometric quantities and units |
|
|
3 | (2) |
|
1.2 Definitions of radiometric quantities |
|
|
5 | (3) |
|
|
8 | (3) |
|
|
11 | (4) |
|
|
15 | (1) |
|
|
16 | (3) |
|
|
19 | (2) |
|
2 Infrared systems fundamentals |
|
|
21 | (28) |
|
2.1 Infrared detector market |
|
|
21 | (1) |
|
2.2 Night vision system concepts |
|
|
21 | (5) |
|
|
26 | (10) |
|
2.3.1 Thermal imaging system concepts |
|
|
27 | (3) |
|
2.3.2 IR cameras versus FLIR systems |
|
|
30 | (4) |
|
2.3.3 Space-based systems |
|
|
34 | (2) |
|
|
36 | (9) |
|
|
38 | (2) |
|
|
40 | (1) |
|
|
40 | (1) |
|
|
41 | (2) |
|
2.4.1.4 Joule-Thomson coolers |
|
|
43 | (1) |
|
|
43 | (1) |
|
|
43 | (1) |
|
2.4.1.7 Adiabatic demagnetization |
|
|
43 | (1) |
|
|
43 | (1) |
|
|
43 | (1) |
|
|
44 | (1) |
|
2.5 Atmospheric transmission and IR bands |
|
|
45 | (1) |
|
2.6 Scene radiation and contrast |
|
|
46 | (1) |
|
|
47 | (2) |
|
3 Characterization of infrared detectors |
|
|
49 | (22) |
|
3.1 Historical aspects of modern IR technology |
|
|
50 | (4) |
|
3.2 Classification of IR detectors |
|
|
54 | (4) |
|
3.3 Detector operating temperature |
|
|
58 | (2) |
|
3.4 Detector figures of merit |
|
|
60 | (3) |
|
|
60 | (1) |
|
3.4.2 Noise equivalent power |
|
|
61 | (1) |
|
|
61 | (1) |
|
|
61 | (2) |
|
3.5 Fundamental detectivity limits |
|
|
63 | (5) |
|
|
68 | (3) |
|
4 Fundamental performance limitations of infrared detectors |
|
|
71 | (24) |
|
|
71 | (7) |
|
4.1.1 Principle of operation |
|
|
71 | (3) |
|
|
74 | (1) |
|
4.1.3 Detectivity and fundamental limits |
|
|
75 | (3) |
|
|
78 | (9) |
|
4.2.1 Photon detection process |
|
|
78 | (3) |
|
4.2.2 Model of photon detector |
|
|
81 | (1) |
|
4.2.2.1 Optical generation noise |
|
|
82 | (2) |
|
4.2.2.2 Thermal generation and recombination noise |
|
|
84 | (1) |
|
4.2.3 Optimum thickness of photodetector |
|
|
85 | (1) |
|
4.2.4 Detector materials figure of merit |
|
|
85 | (2) |
|
4.3 Comparison of fundamental limits of photon and thermal detectors |
|
|
87 | (3) |
|
4.4 Modeling of photodetectors |
|
|
90 | (3) |
|
|
93 | (2) |
|
5 Coupling of infrared radiation with detectors |
|
|
95 | (18) |
|
|
95 | (2) |
|
|
97 | (9) |
|
|
98 | (2) |
|
5.2.2 Plasmonic coupling of infrared detectors |
|
|
100 | (6) |
|
5.3 Photon trapping detectors |
|
|
106 | (5) |
|
|
111 | (2) |
|
|
113 | (14) |
|
6.1 Heterodyne detection theory |
|
|
115 | (3) |
|
6.2 Infrared heterodyne technology |
|
|
118 | (6) |
|
|
124 | (3) |
|
PART II INFRARED THERMAL DETECTORS |
|
|
127 | (94) |
|
|
129 | (16) |
|
7.1 Basic principle and operation of thermopiles |
|
|
129 | (4) |
|
|
133 | (2) |
|
7.3 Thermoelectric materials |
|
|
135 | (3) |
|
7.4 Micromachined thermopiles |
|
|
138 | (4) |
|
7.4.1 Design optimization |
|
|
138 | (1) |
|
7.4.2 Thermopile configurations |
|
|
139 | (1) |
|
7.4.3 Micromachined thermopile technology |
|
|
140 | (2) |
|
|
142 | (3) |
|
|
145 | (34) |
|
8.1 Basic principle and operation of bolometers |
|
|
145 | (3) |
|
|
148 | (4) |
|
|
148 | (1) |
|
|
149 | (1) |
|
8.2.3 Semiconductor bolometers |
|
|
150 | (2) |
|
8.3 Micromachined room-temperature bolometers |
|
|
152 | (8) |
|
8.3.1 Microbolometer sensing materials |
|
|
155 | (1) |
|
|
155 | (1) |
|
8.3.1.2 Amorphous silicon |
|
|
156 | (1) |
|
|
157 | (2) |
|
|
159 | (1) |
|
8.4 Superconducting bolometers |
|
|
160 | (5) |
|
8.5 High-temperature superconducting bolometers |
|
|
165 | (5) |
|
8.6 Hot electron bolometers |
|
|
170 | (4) |
|
|
174 | (5) |
|
|
179 | (20) |
|
9.1 Basic principle and operation of pyroelectric detectors |
|
|
179 | (6) |
|
|
180 | (4) |
|
9.1.2 Noise and detectivity |
|
|
184 | (1) |
|
9.2 Pyroelectric material selection |
|
|
185 | (9) |
|
|
186 | (4) |
|
9.2.2 Pyroelectric polymers |
|
|
190 | (1) |
|
9.2.3 Pyroelectric ceramics |
|
|
191 | (1) |
|
9.2.4 Dielectric bolometers |
|
|
192 | (1) |
|
|
193 | (1) |
|
|
194 | (2) |
|
|
196 | (1) |
|
|
196 | (3) |
|
|
199 | (4) |
|
|
199 | (2) |
|
10.2 Micromachined Golay-type sensors |
|
|
201 | (1) |
|
|
202 | (1) |
|
11 Novel thermal detectors |
|
|
203 | (18) |
|
11.1 Novel uncooled detectors |
|
|
203 | (13) |
|
11.1.1 Electrically coupled cantilevers |
|
|
205 | (4) |
|
11.1.2 Optically coupled cantilevers |
|
|
209 | (5) |
|
11.1.3 Pyro-optical transducers |
|
|
214 | (2) |
|
11.2 Comparison of thermal detectors |
|
|
216 | (1) |
|
|
217 | (4) |
|
PART III INFRARED PHOTON DETECTORS |
|
|
221 | (508) |
|
12 Theory of photon detectors |
|
|
223 | (82) |
|
12.1 Photoconductive detectors |
|
|
223 | (22) |
|
12.1.1 Intrinsic photoconductivity theory |
|
|
223 | (2) |
|
12.1.1.1 Sweep-out effects |
|
|
225 | (3) |
|
12.1.1.2 Noise mechanisms in photoconductors |
|
|
228 | (2) |
|
12.1.1.3 Quantum efficiency |
|
|
230 | (1) |
|
12.1.1.4 Ultimate performance of photoconductors |
|
|
230 | (2) |
|
12.1.1.5 Influence of background |
|
|
232 | (1) |
|
12.1.1.6 Influence of surface recombination |
|
|
232 | (1) |
|
12.1.2 Extrinsic photoconductivity theory |
|
|
233 | (9) |
|
12.1.3 Operating temperature of intrinsic and extrinsic IR detectors |
|
|
242 | (3) |
|
12.2 p-n junction photodiodes |
|
|
245 | (18) |
|
12.2.1 Ideal diffusion-limited p-n junctions |
|
|
247 | (1) |
|
12.2.1.1 Diffusion current |
|
|
247 | (2) |
|
12.2.1.2 Quantum efficiency |
|
|
249 | (2) |
|
|
251 | (1) |
|
|
252 | (1) |
|
12.2.2 Real p-n junctions |
|
|
253 | (1) |
|
12.2.2.1 Generation---recombination current |
|
|
254 | (2) |
|
12.2.2.2 Tunneling current |
|
|
256 | (2) |
|
12.2.2.3 Surface leakage current |
|
|
258 | (2) |
|
12.2.2.4 Space charge-limited current |
|
|
260 | (2) |
|
|
262 | (1) |
|
|
263 | (2) |
|
12.4 Avalanche photodiodes |
|
|
265 | (6) |
|
12.5 Schottky-barrier photodiodes |
|
|
271 | (5) |
|
12.5.1 Schottky-Mott theory and its modifications |
|
|
271 | (2) |
|
12.5.2 Current transport processes |
|
|
273 | (3) |
|
|
276 | (1) |
|
12.6 Metal-semiconductor-metal photodiodes |
|
|
276 | (2) |
|
|
278 | (4) |
|
12.8 Nonequilibrium photodiodes |
|
|
282 | (1) |
|
12.9 Barrier photodetectors |
|
|
283 | (5) |
|
12.9.1 Principle of operation |
|
|
283 | (5) |
|
12.10 Photoelectromagnetic, magnetoconcentration, and Dember detectors |
|
|
288 | (6) |
|
12.10.1 Photoelectromagnetic detectors |
|
|
289 | (1) |
|
|
289 | (2) |
|
12.10.1.2 Fabrication and performance |
|
|
291 | (1) |
|
12.10.2 Magnetoconcentration detectors |
|
|
292 | (1) |
|
|
293 | (1) |
|
12.11 Photon-drag detectors |
|
|
294 | (3) |
|
|
297 | (8) |
|
13 Intrinsic silicon and germanium detectors |
|
|
305 | (18) |
|
|
305 | (9) |
|
13.2 Germanium photodiodes |
|
|
314 | (3) |
|
|
317 | (3) |
|
|
320 | (3) |
|
14 Extrinsic silicon and germanium detectors |
|
|
323 | (20) |
|
14.1 Extrinsic photoconductivity |
|
|
323 | (1) |
|
14.2 Technology of extrinsic photoconductors |
|
|
324 | (2) |
|
14.3 Peculiarities of the operation of extrinsic photoconductors |
|
|
326 | (2) |
|
14.4 Performance of extrinsic photoconductors |
|
|
328 | (4) |
|
14.4.1 Silicon-doped photoconductors |
|
|
328 | (3) |
|
14.4.2 Germanium-doped photoconductors |
|
|
331 | (1) |
|
14.5 Blocked impurity band devices |
|
|
332 | (5) |
|
14.6 Solid-state photomultipliers |
|
|
337 | (1) |
|
|
338 | (5) |
|
15 Photoemissive detectors |
|
|
343 | (18) |
|
15.1 Internal photoemission process |
|
|
343 | (8) |
|
15.1.1 Scattering effects |
|
|
347 | (2) |
|
|
349 | (1) |
|
|
350 | (1) |
|
15.2 Control of Schottky-barrier detector cutoff wavelength |
|
|
351 | (1) |
|
15.3 Optimized structure and fabrication of Schottky-barrier detectors |
|
|
351 | (2) |
|
15.4 Novel internal photoemissive detectors |
|
|
353 | (3) |
|
15.4.1 Heterojunction internal photoemissive detectors |
|
|
353 | (1) |
|
15.4.2 Homojunction internal photoemissive detectors |
|
|
354 | (2) |
|
|
356 | (5) |
|
|
361 | (56) |
|
16.1 Some physical properties of III---V narrow gap semiconductors |
|
|
361 | (10) |
|
|
371 | (6) |
|
16.2.1 p-i-n InGaAs photodiodes |
|
|
372 | (3) |
|
16.2.2 InGaAs avalanche photodiodes |
|
|
375 | (2) |
|
16.3 Binary III---V photodetectors |
|
|
377 | (18) |
|
16.3.1 InSb photoconductive detectors |
|
|
377 | (3) |
|
16.3.2 InSb photoelectromagnetic detectors |
|
|
380 | (1) |
|
|
380 | (8) |
|
16.3.4 InSb nonequilibrium photodiodes |
|
|
388 | (1) |
|
|
389 | (6) |
|
16.4 InAsSb photodetectors |
|
|
395 | (9) |
|
16.5 Photodiodes based on GaSb-related ternary and quaternary alloys |
|
|
404 | (3) |
|
16.6 Novel Sb-based III---V narrow gap photodetectors |
|
|
407 | (1) |
|
|
408 | (9) |
|
|
417 | (110) |
|
17.1 HgCdTe historical perspective |
|
|
417 | (2) |
|
17.2 HgCdTe: Technology and properties |
|
|
419 | (10) |
|
|
420 | (2) |
|
17.2.2 Outlook on crystal growth |
|
|
422 | (4) |
|
17.2.3 Defects and impurities |
|
|
426 | (1) |
|
|
426 | (2) |
|
|
428 | (1) |
|
17.3 Fundamental HgCdTe properties |
|
|
429 | (13) |
|
|
430 | (1) |
|
|
431 | (2) |
|
17.3.3 Optical properties |
|
|
433 | (4) |
|
17.3.4 Thermal generation-recombination processes |
|
|
437 | (1) |
|
17.3.4.1 Shockley-Read processes |
|
|
438 | (1) |
|
17.3.4.2 Radiative processes |
|
|
439 | (1) |
|
|
440 | (2) |
|
17.4 Auger-dominated photodetector performance |
|
|
442 | (3) |
|
17.4.1 Equilibrium devices |
|
|
442 | (1) |
|
17.4.2 Nonequilibrium devices |
|
|
443 | (2) |
|
17.5 Photoconductive detectors |
|
|
445 | (15) |
|
|
445 | (2) |
|
17.5.2 Performance of photoconductive detectors |
|
|
447 | (1) |
|
17.5.2.1 Devices for operation at 77 K |
|
|
447 | (4) |
|
17.5.2.2 Devices for operation above 77 K |
|
|
451 | (1) |
|
17.5.3 Other modes of photoconductor operations |
|
|
452 | (1) |
|
17.5.3.1 Trapping-mode photoconductors |
|
|
452 | (1) |
|
17.5.3.2 Excluded photoconductors |
|
|
453 | (3) |
|
|
456 | (4) |
|
17.6 Photovoltaic detectors |
|
|
460 | (39) |
|
17.6.1 Junction formation |
|
|
461 | (1) |
|
|
461 | (1) |
|
|
462 | (1) |
|
17.6.1.3 Ion implantation |
|
|
462 | (3) |
|
17.6.1.4 Reactive ion etching |
|
|
465 | (1) |
|
17.6.1.5 Doping during growth |
|
|
466 | (1) |
|
|
467 | (2) |
|
17.6.1.7 Device processing |
|
|
469 | (2) |
|
17.6.2 Fundamental limitation to HgCdTe photodiode performance |
|
|
471 | (11) |
|
17.6.3 Nonfundamental limitation to HgCdTe photodiode performance |
|
|
482 | (1) |
|
17.6.3.1 Current-voltage characteristics |
|
|
483 | (2) |
|
17.6.3.2 Dislocations and 1/f noise |
|
|
485 | (3) |
|
17.6.4 Avalanche photodiodes |
|
|
488 | (6) |
|
17.6.5 Auger-suppressed photodiodes |
|
|
494 | (3) |
|
|
497 | (1) |
|
17.6.7 Schottky barrier photodiodes |
|
|
498 | (1) |
|
17.7 Barrier photodetectors |
|
|
499 | (4) |
|
17.8 Hg-based alternative detectors |
|
|
503 | (5) |
|
|
504 | (1) |
|
17.8.2 Physical properties |
|
|
505 | (1) |
|
17.8.3 HgZnTe photodetectors |
|
|
506 | (1) |
|
17.8.4 HgMnTe photodetectors |
|
|
507 | (1) |
|
|
508 | (19) |
|
|
527 | (52) |
|
18.1 Material preparation and properties |
|
|
527 | (14) |
|
|
527 | (4) |
|
18.1.2 Defects and impurities |
|
|
531 | (1) |
|
18.1.3 Some physical properties |
|
|
532 | (5) |
|
18.1.4 Generation-recombination processes |
|
|
537 | (4) |
|
18.2 Polycrystalline photoconductive detectors |
|
|
541 | (5) |
|
18.2.1 Deposition of polycrystalline lead salts |
|
|
541 | (1) |
|
|
542 | (2) |
|
|
544 | (2) |
|
18.3 p-n junction photodiodes |
|
|
546 | (9) |
|
|
546 | (5) |
|
18.3.2 Technology and properties |
|
|
551 | (1) |
|
18.3.2.1 Diffused photodiodes |
|
|
551 | (2) |
|
18.3.2.2 Ion implantation |
|
|
553 | (1) |
|
|
553 | (2) |
|
18.4 Schottky-barrier photodiodes |
|
|
555 | (7) |
|
18.4.1 Schottky barrier controversial issue |
|
|
555 | (2) |
|
18.4.2 Technology and properties |
|
|
557 | (5) |
|
18.5 Unconventional thin-film photodiodes |
|
|
562 | (3) |
|
18.6 Tunable resonant cavity enhanced detectors |
|
|
565 | (2) |
|
18.7 Lead salts versus HgCdTe |
|
|
567 | (2) |
|
|
569 | (10) |
|
19 Quantum well infrared photodetectors |
|
|
579 | (52) |
|
19.1 Low dimensional solids: Background |
|
|
579 | (5) |
|
19.2 Multiple quantum wells and superlattices |
|
|
584 | (8) |
|
19.2.1 Compositional superlattices |
|
|
584 | (3) |
|
19.2.2 Doping superlattices |
|
|
587 | (1) |
|
19.2.3 Intersubband optical transitions |
|
|
587 | (4) |
|
19.2.4 Intersubband relaxation time |
|
|
591 | (1) |
|
19.3 Photoconductive QWIP |
|
|
592 | (16) |
|
|
594 | (1) |
|
|
595 | (5) |
|
|
600 | (1) |
|
19.3.4 Detector performance |
|
|
601 | (4) |
|
19.3.5 QWIP versus HgCdTe |
|
|
605 | (3) |
|
|
608 | (3) |
|
19.5 Superlattice miniband QWIP |
|
|
611 | (1) |
|
|
612 | (3) |
|
|
615 | (9) |
|
19.7.1 p-doped GaAs/AlGaAs QWIPs |
|
|
615 | (1) |
|
19.7.2 Hot-electron transistor detectors |
|
|
616 | (1) |
|
|
617 | (2) |
|
19.7.4 QWIPs with other material systems |
|
|
619 | (1) |
|
19.7.5 Multicolor detectors |
|
|
620 | (3) |
|
19.7.6 Integrated QWIP-LED |
|
|
623 | (1) |
|
|
624 | (7) |
|
20 Superlattice detectors |
|
|
631 | (40) |
|
20.1 HgTe/HgCdTe superlattices |
|
|
632 | (5) |
|
20.1.1 Material properties |
|
|
632 | (4) |
|
20.1.2 Superlattice photodiodes |
|
|
636 | (1) |
|
20.2 Type II superlattices |
|
|
637 | (10) |
|
20.2.1 Physical properties |
|
|
640 | (7) |
|
20.3 InAs/GaSb superlattice photodiodes |
|
|
647 | (10) |
|
|
649 | (4) |
|
|
653 | (4) |
|
20.4 InAs/InAsSb superlattice photodiodes |
|
|
657 | (1) |
|
|
658 | (4) |
|
20.6 Noise mechanisms in type II superlattice photodetectors |
|
|
662 | (2) |
|
|
664 | (7) |
|
21 Quantum dot infrared photodetectors |
|
|
671 | (18) |
|
21.1 QDIP preparation and principle of operation |
|
|
671 | (2) |
|
21.2 Anticipated advantages of QDIPs |
|
|
673 | (1) |
|
|
674 | (6) |
|
21.4 Performance of QDIPs |
|
|
680 | (3) |
|
|
680 | (1) |
|
21.4.2 Detectivity at 78 K |
|
|
680 | (1) |
|
21.4.3 Performance at higher temperature |
|
|
681 | (2) |
|
|
683 | (2) |
|
|
685 | (4) |
|
22 Infrared barrier photodetectors |
|
|
689 | (26) |
|
22.1 SWIR barrier detectors |
|
|
689 | (2) |
|
22.2 InAsSb barrier detectors |
|
|
691 | (3) |
|
22.3 InAs/GaSb type II barrier detectors |
|
|
694 | (6) |
|
22.4 Barrier detectors versus HgCdTe photodiodes |
|
|
700 | (11) |
|
22.4.1 X rdiff product as the figure of merit of diffusion-limited photodetector |
|
|
703 | (1) |
|
22.4.2 Dark current density |
|
|
704 | (3) |
|
22.4.3 Noise equivalent difference temperature |
|
|
707 | (1) |
|
22.4.4 Comparison with experimental data |
|
|
708 | (3) |
|
|
711 | (4) |
|
23 Cascade infrared photodetectors |
|
|
715 | (14) |
|
23.1 Multistage infrared detectors |
|
|
715 | (1) |
|
23.2 Type II superlattice interband cascade infrared detectors |
|
|
716 | (8) |
|
23.2.1 Principle of operation |
|
|
717 | (2) |
|
23.2.2 MWIR interband cascade detectors |
|
|
719 | (2) |
|
23.2.3 LWIR interband cascade detectors |
|
|
721 | (3) |
|
23.3 Performance comparison with HgCdTe HOT photodetectors |
|
|
724 | (2) |
|
|
726 | (3) |
|
PART IV INFRARED FOCAL PLANE ARRAYS |
|
|
729 | (198) |
|
24 Overview of focal plane array architectures |
|
|
731 | (42) |
|
24.1 Focal plane array overview |
|
|
732 | (3) |
|
|
735 | (5) |
|
|
735 | (2) |
|
|
737 | (3) |
|
|
740 | (4) |
|
24.4 Readout integrated circuits |
|
|
744 | (6) |
|
24.5 Performance of focal plane arrays |
|
|
750 | (7) |
|
24.5.1 Modulation transfer function |
|
|
750 | (1) |
|
24.5.2 Noise equivalent difference temperature |
|
|
750 | (5) |
|
24.5.3 NEDT limited by readout circuit |
|
|
755 | (1) |
|
24.5.3.1 Readout-limited NEDT for HgCdTe photodiode and QWIP |
|
|
756 | (1) |
|
24.6 Toward small pixel focal plane arrays |
|
|
757 | (10) |
|
24.6.1 SWaP considerations |
|
|
765 | (2) |
|
24.7 Adaptive focal plane arrays |
|
|
767 | (2) |
|
|
769 | (4) |
|
25 Thermal detector focal plane arrays |
|
|
773 | (40) |
|
25.1 Thermopile focal plane arrays |
|
|
775 | (3) |
|
25.2 Bolometer focal plane arrays |
|
|
778 | (16) |
|
25.2.1 Trade-off between sensitivity, response time, and detector size |
|
|
780 | (4) |
|
25.2.2 Manufacturing techniques |
|
|
784 | (3) |
|
|
787 | (7) |
|
25.3 Pyroelectric focal plane arrays |
|
|
794 | (8) |
|
|
795 | (2) |
|
25.3.2 Hybrid architecture |
|
|
797 | (1) |
|
25.3.3 Monolithic architecture |
|
|
798 | (4) |
|
|
802 | (2) |
|
25.5 Novel uncooled focal plane arrays |
|
|
804 | (2) |
|
|
806 | (7) |
|
26 Photon detector focal plane arrays |
|
|
813 | (78) |
|
26.1 Intrinsic silicon arrays |
|
|
813 | (11) |
|
26.2 Extrinsic silicon and germanium arrays |
|
|
824 | (6) |
|
26.3 Photoemissive arrays |
|
|
830 | (6) |
|
26.4 III-V focal plane arrays |
|
|
836 | (10) |
|
|
837 | (3) |
|
|
840 | (1) |
|
|
840 | (3) |
|
26.4.2.2 Monolithic InSb arrays |
|
|
843 | (3) |
|
26.5 HgCdTe focal plane arrays |
|
|
846 | (11) |
|
26.5.1 Monolithic focal plane arrays |
|
|
848 | (1) |
|
26.5.2 Hybrid focal plane arrays |
|
|
849 | (8) |
|
|
857 | (5) |
|
26.7 Quantum well infrared photoconductor arrays |
|
|
862 | (3) |
|
26.8 Barrier detector and type-II superlattice focal plane arrays |
|
|
865 | (7) |
|
26.9 HgCdTe versus III-Vs---future prospect |
|
|
872 | (7) |
|
26.9.1 p-i-n HgCdTe photodiodes |
|
|
874 | (2) |
|
26.9.2 Manufacturability of focal plane arrays |
|
|
876 | (1) |
|
|
877 | (2) |
|
|
879 | (12) |
|
27 Third-generation infrared detectors |
|
|
891 | (36) |
|
27.1 Requirements of third-generation detectors |
|
|
892 | (4) |
|
27.2 HgCdTe multicolor detectors |
|
|
896 | (10) |
|
27.2.1 Dual-band HgCdTe detectors |
|
|
897 | (6) |
|
27.2.2 Three-color HgCdTe detectors |
|
|
903 | (3) |
|
27.3 Multiband quantum well infrared photoconductors |
|
|
906 | (8) |
|
27.4 Multiband type-II InAs/GaSb detectors |
|
|
914 | (4) |
|
27.5 Multiband quantum dot infrared photodetectors |
|
|
918 | (3) |
|
|
921 | (6) |
|
PART V TERAHERTZ DETECTORS AND FOCAL PLANE ARRAYS |
|
|
927 | (102) |
|
28 Terahertz detectors and focal plane arrays |
|
|
929 | (100) |
|
|
929 | (3) |
|
28.2 Outlook on terahertz radiation specificity |
|
|
932 | (3) |
|
28.3 Trends in developments of terahertz detectors |
|
|
935 | (3) |
|
28.4 Direct and heterodyne terahertz detection |
|
|
938 | (8) |
|
|
941 | (1) |
|
28.4.2 Heterodyne detection |
|
|
942 | (4) |
|
28.4.3 Heterodyne vs. direct detection |
|
|
946 | (1) |
|
28.5 Photoconductive terahertz generation and detection |
|
|
946 | (2) |
|
28.6 Room temperature terahertz detectors |
|
|
948 | (23) |
|
28.6.1 Schottky barrier diodes |
|
|
952 | (6) |
|
28.6.2 Pyroelectric detectors |
|
|
958 | (2) |
|
|
960 | (5) |
|
28.6.4 Field-effect transistor detectors |
|
|
965 | (6) |
|
|
971 | (1) |
|
28.8 Pair braking photon detectors |
|
|
972 | (4) |
|
28.9 Microwave kinetic inductance detectors |
|
|
976 | (3) |
|
28.10 Semiconductor bolometers |
|
|
979 | (5) |
|
28.10.1 Semiconductor hot electron bolometers |
|
|
983 | (1) |
|
28.11 Superconducting bolometers |
|
|
984 | (6) |
|
28.11.1 Superconducting hot-electron bolometers |
|
|
985 | (5) |
|
28.12 Transition edge sensor bolometers |
|
|
990 | (5) |
|
28.13 Novel terahertz detectors |
|
|
995 | (34) |
|
28.13.1 Novel nanoelectronic detectors |
|
|
995 | (2) |
|
28.13.1.1 Quantum dot detectors |
|
|
997 | (1) |
|
28.13.1.2 Charge-sensitive IR phototransistors |
|
|
998 | (3) |
|
28.13.2 Graphene detectors |
|
|
1001 | (1) |
|
28.13.2.1 Relevant graphene properties |
|
|
1001 | (2) |
|
28.13.2.2 Photodetection mechanisms in graphene detectors |
|
|
1003 | (5) |
|
28.13.2.3 Responsivity enhanced graphene detectors |
|
|
1008 | (1) |
|
28.13.2.4 Related 2D material detectors |
|
|
1008 | (4) |
|
28.13.2.5 Graphene detector performance-the present status |
|
|
1012 | (17) |
|
|
1029 | (1) |
Final Remarks |
|
1029 | (2) |
Index |
|
1031 | |