Muutke küpsiste eelistusi

E-raamat: Infrared and Terahertz Detectors, Third Edition

  • Formaat: 1066 pages
  • Ilmumisaeg: 10-Jan-2019
  • Kirjastus: CRC Press
  • Keel: eng
  • ISBN-13: 9781351984751
  • Formaat - EPUB+DRM
  • Hind: 59,79 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 1066 pages
  • Ilmumisaeg: 10-Jan-2019
  • Kirjastus: CRC Press
  • Keel: eng
  • ISBN-13: 9781351984751

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

"This new edition of Infrared and Terahertz Detectors provides a comprehensive overview of infrared and terahertz detector technology, from fundamental science to materials and fabrication techniques. It contains a complete overhaul of the contents including several new chapters and a new section on terahertz detectors and systems. It includes a new tutorial introduction to technical aspects that are fundamental for basic understanding. The other dedicated sections focus on thermal detectors, photon detectors, and focal plane arrays"--

This new edition of Infrared and Terahertz Detectors provides a comprehensive overview of infrared and terahertz detector technology, from fundamental science to materials and fabrication techniques. It contains a complete overhaul of the contents including several new chapters and a new section on terahertz detectors and systems. It includes a new tutorial introduction to technical aspects that are fundamental for basic understanding. The other dedicated sections focus on thermal detectors, photon detectors, and focal plane arrays.

Preface to the third edition xvii
Acknowledgements to the third edition xix
About the author xxi
PART I FUNDAMENTALS OF INFRARED AND TERAHERTZ DETECTION
1(126)
1 Radiometry
3(18)
1.1 Radiometric and photometric quantities and units
3(2)
1.2 Definitions of radiometric quantities
5(3)
1.3 Radiance
8(3)
1.4 Blackbody radiation
11(4)
1.5 Emissivity
15(1)
1.6 Infrared optics
16(3)
References
19(2)
2 Infrared systems fundamentals
21(28)
2.1 Infrared detector market
21(1)
2.2 Night vision system concepts
21(5)
2.3 Thermal imaging
26(10)
2.3.1 Thermal imaging system concepts
27(3)
2.3.2 IR cameras versus FLIR systems
30(4)
2.3.3 Space-based systems
34(2)
2.4 Cooler technologies
36(9)
2.4.1 Cryocoolers
38(2)
2.4.1.1 Cryogenic dewars
40(1)
2.4.1.2 Stirling cycle
40(1)
2.4.1.3 Pulse tube
41(2)
2.4.1.4 Joule-Thomson coolers
43(1)
2.4.1.5 Sorption
43(1)
2.4.1.6 Brayton
43(1)
2.4.1.7 Adiabatic demagnetization
43(1)
2.4.1.8 3He coolers
43(1)
2.4.1.9 Passive coolers
43(1)
2.4.2 Peltier coolers
44(1)
2.5 Atmospheric transmission and IR bands
45(1)
2.6 Scene radiation and contrast
46(1)
References
47(2)
3 Characterization of infrared detectors
49(22)
3.1 Historical aspects of modern IR technology
50(4)
3.2 Classification of IR detectors
54(4)
3.3 Detector operating temperature
58(2)
3.4 Detector figures of merit
60(3)
3.4.1 Responsivity
60(1)
3.4.2 Noise equivalent power
61(1)
3.4.3 Detectivity
61(1)
3.4.4 Quantum efficiency
61(2)
3.5 Fundamental detectivity limits
63(5)
References
68(3)
4 Fundamental performance limitations of infrared detectors
71(24)
4.1 Thermal detectors
71(7)
4.1.1 Principle of operation
71(3)
4.1.2 Noise mechanisms
74(1)
4.1.3 Detectivity and fundamental limits
75(3)
4.2 Photon detectors
78(9)
4.2.1 Photon detection process
78(3)
4.2.2 Model of photon detector
81(1)
4.2.2.1 Optical generation noise
82(2)
4.2.2.2 Thermal generation and recombination noise
84(1)
4.2.3 Optimum thickness of photodetector
85(1)
4.2.4 Detector materials figure of merit
85(2)
4.3 Comparison of fundamental limits of photon and thermal detectors
87(3)
4.4 Modeling of photodetectors
90(3)
References
93(2)
5 Coupling of infrared radiation with detectors
95(18)
5.1 Standard coupling
95(2)
5.2 Plasmonic coupling
97(9)
5.2.1 Surface plasmons
98(2)
5.2.2 Plasmonic coupling of infrared detectors
100(6)
5.3 Photon trapping detectors
106(5)
References
111(2)
6 Heterodyne detection
113(14)
6.1 Heterodyne detection theory
115(3)
6.2 Infrared heterodyne technology
118(6)
References
124(3)
PART II INFRARED THERMAL DETECTORS
127(94)
7 Thermopiles
129(16)
7.1 Basic principle and operation of thermopiles
129(4)
7.2 Figures of merit
133(2)
7.3 Thermoelectric materials
135(3)
7.4 Micromachined thermopiles
138(4)
7.4.1 Design optimization
138(1)
7.4.2 Thermopile configurations
139(1)
7.4.3 Micromachined thermopile technology
140(2)
References
142(3)
8 Bolometers
145(34)
8.1 Basic principle and operation of bolometers
145(3)
8.2 Types of bolometers
148(4)
8.2.1 Metal bolometers
148(1)
8.2.2 Thermistors
149(1)
8.2.3 Semiconductor bolometers
150(2)
8.3 Micromachined room-temperature bolometers
152(8)
8.3.1 Microbolometer sensing materials
155(1)
8.3.1.1 Vanadium oxide
155(1)
8.3.1.2 Amorphous silicon
156(1)
8.3.1.3 Silicon diodes
157(2)
8.3.1.4 Other materials
159(1)
8.4 Superconducting bolometers
160(5)
8.5 High-temperature superconducting bolometers
165(5)
8.6 Hot electron bolometers
170(4)
References
174(5)
9 Pyroelectric detectors
179(20)
9.1 Basic principle and operation of pyroelectric detectors
179(6)
9.1.1 Responsivity
180(4)
9.1.2 Noise and detectivity
184(1)
9.2 Pyroelectric material selection
185(9)
9.2.1 Single crystals
186(4)
9.2.2 Pyroelectric polymers
190(1)
9.2.3 Pyroelectric ceramics
191(1)
9.2.4 Dielectric bolometers
192(1)
9.2.5 Choice of material
193(1)
9.3 Detector designs
194(2)
9.4 Pyroelectric vidicon
196(1)
References
196(3)
10 Pneumatic detectors
199(4)
10.1 Golay detector
199(2)
10.2 Micromachined Golay-type sensors
201(1)
References
202(1)
11 Novel thermal detectors
203(18)
11.1 Novel uncooled detectors
203(13)
11.1.1 Electrically coupled cantilevers
205(4)
11.1.2 Optically coupled cantilevers
209(5)
11.1.3 Pyro-optical transducers
214(2)
11.2 Comparison of thermal detectors
216(1)
References
217(4)
PART III INFRARED PHOTON DETECTORS
221(508)
12 Theory of photon detectors
223(82)
12.1 Photoconductive detectors
223(22)
12.1.1 Intrinsic photoconductivity theory
223(2)
12.1.1.1 Sweep-out effects
225(3)
12.1.1.2 Noise mechanisms in photoconductors
228(2)
12.1.1.3 Quantum efficiency
230(1)
12.1.1.4 Ultimate performance of photoconductors
230(2)
12.1.1.5 Influence of background
232(1)
12.1.1.6 Influence of surface recombination
232(1)
12.1.2 Extrinsic photoconductivity theory
233(9)
12.1.3 Operating temperature of intrinsic and extrinsic IR detectors
242(3)
12.2 p-n junction photodiodes
245(18)
12.2.1 Ideal diffusion-limited p-n junctions
247(1)
12.2.1.1 Diffusion current
247(2)
12.2.1.2 Quantum efficiency
249(2)
12.2.1.3 Noise
251(1)
12.2.1.4 Detectivity
252(1)
12.2.2 Real p-n junctions
253(1)
12.2.2.1 Generation---recombination current
254(2)
12.2.2.2 Tunneling current
256(2)
12.2.2.3 Surface leakage current
258(2)
12.2.2.4 Space charge-limited current
260(2)
12.2.3 Response time
262(1)
12.3 p-i-n photodiodes
263(2)
12.4 Avalanche photodiodes
265(6)
12.5 Schottky-barrier photodiodes
271(5)
12.5.1 Schottky-Mott theory and its modifications
271(2)
12.5.2 Current transport processes
273(3)
12.5.3 Silicides
276(1)
12.6 Metal-semiconductor-metal photodiodes
276(2)
12.7 MIS photodiodes
278(4)
12.8 Nonequilibrium photodiodes
282(1)
12.9 Barrier photodetectors
283(5)
12.9.1 Principle of operation
283(5)
12.10 Photoelectromagnetic, magnetoconcentration, and Dember detectors
288(6)
12.10.1 Photoelectromagnetic detectors
289(1)
12.10.1.1 PEM effect
289(2)
12.10.1.2 Fabrication and performance
291(1)
12.10.2 Magnetoconcentration detectors
292(1)
12.10.3 Dember detectors
293(1)
12.11 Photon-drag detectors
294(3)
References
297(8)
13 Intrinsic silicon and germanium detectors
305(18)
13.1 Silicon photodiodes
305(9)
13.2 Germanium photodiodes
314(3)
13.3 SiGe photodiodes
317(3)
References
320(3)
14 Extrinsic silicon and germanium detectors
323(20)
14.1 Extrinsic photoconductivity
323(1)
14.2 Technology of extrinsic photoconductors
324(2)
14.3 Peculiarities of the operation of extrinsic photoconductors
326(2)
14.4 Performance of extrinsic photoconductors
328(4)
14.4.1 Silicon-doped photoconductors
328(3)
14.4.2 Germanium-doped photoconductors
331(1)
14.5 Blocked impurity band devices
332(5)
14.6 Solid-state photomultipliers
337(1)
References
338(5)
15 Photoemissive detectors
343(18)
15.1 Internal photoemission process
343(8)
15.1.1 Scattering effects
347(2)
15.1.2 Dark current
349(1)
15.1.3 Metal electrodes
350(1)
15.2 Control of Schottky-barrier detector cutoff wavelength
351(1)
15.3 Optimized structure and fabrication of Schottky-barrier detectors
351(2)
15.4 Novel internal photoemissive detectors
353(3)
15.4.1 Heterojunction internal photoemissive detectors
353(1)
15.4.2 Homojunction internal photoemissive detectors
354(2)
References
356(5)
16 III-V Detectors
361(56)
16.1 Some physical properties of III---V narrow gap semiconductors
361(10)
16.2 InGaAs photodiodes
371(6)
16.2.1 p-i-n InGaAs photodiodes
372(3)
16.2.2 InGaAs avalanche photodiodes
375(2)
16.3 Binary III---V photodetectors
377(18)
16.3.1 InSb photoconductive detectors
377(3)
16.3.2 InSb photoelectromagnetic detectors
380(1)
16.3.3 InSb photodiodes
380(8)
16.3.4 InSb nonequilibrium photodiodes
388(1)
16.3.5 InAs photodiodes
389(6)
16.4 InAsSb photodetectors
395(9)
16.5 Photodiodes based on GaSb-related ternary and quaternary alloys
404(3)
16.6 Novel Sb-based III---V narrow gap photodetectors
407(1)
References
408(9)
17 HgCdTe detectors
417(110)
17.1 HgCdTe historical perspective
417(2)
17.2 HgCdTe: Technology and properties
419(10)
17.2.1 Phase diagrams
420(2)
17.2.2 Outlook on crystal growth
422(4)
17.2.3 Defects and impurities
426(1)
17.2.3.1 Native defects
426(2)
17.2.3.2 Dopants
428(1)
17.3 Fundamental HgCdTe properties
429(13)
17.3.1 Energy bandgap
430(1)
17.3.2 Mobilities
431(2)
17.3.3 Optical properties
433(4)
17.3.4 Thermal generation-recombination processes
437(1)
17.3.4.1 Shockley-Read processes
438(1)
17.3.4.2 Radiative processes
439(1)
17.3.4.3 Auger processes
440(2)
17.4 Auger-dominated photodetector performance
442(3)
17.4.1 Equilibrium devices
442(1)
17.4.2 Nonequilibrium devices
443(2)
17.5 Photoconductive detectors
445(15)
17.5.1 Technology
445(2)
17.5.2 Performance of photoconductive detectors
447(1)
17.5.2.1 Devices for operation at 77 K
447(4)
17.5.2.2 Devices for operation above 77 K
451(1)
17.5.3 Other modes of photoconductor operations
452(1)
17.5.3.1 Trapping-mode photoconductors
452(1)
17.5.3.2 Excluded photoconductors
453(3)
17.5.4 SPRITE detectors
456(4)
17.6 Photovoltaic detectors
460(39)
17.6.1 Junction formation
461(1)
17.6.1.1 Hg in-diffusion
461(1)
17.6.1.2 Ion milling
462(1)
17.6.1.3 Ion implantation
462(3)
17.6.1.4 Reactive ion etching
465(1)
17.6.1.5 Doping during growth
466(1)
17.6.1.6 Passivation
467(2)
17.6.1.7 Device processing
469(2)
17.6.2 Fundamental limitation to HgCdTe photodiode performance
471(11)
17.6.3 Nonfundamental limitation to HgCdTe photodiode performance
482(1)
17.6.3.1 Current-voltage characteristics
483(2)
17.6.3.2 Dislocations and 1/f noise
485(3)
17.6.4 Avalanche photodiodes
488(6)
17.6.5 Auger-suppressed photodiodes
494(3)
17.6.6 MIS photodiodes
497(1)
17.6.7 Schottky barrier photodiodes
498(1)
17.7 Barrier photodetectors
499(4)
17.8 Hg-based alternative detectors
503(5)
17.8.1 Crystal growth
504(1)
17.8.2 Physical properties
505(1)
17.8.3 HgZnTe photodetectors
506(1)
17.8.4 HgMnTe photodetectors
507(1)
References
508(19)
18 IV-VI detectors
527(52)
18.1 Material preparation and properties
527(14)
18.1.1 Crystal growth
527(4)
18.1.2 Defects and impurities
531(1)
18.1.3 Some physical properties
532(5)
18.1.4 Generation-recombination processes
537(4)
18.2 Polycrystalline photoconductive detectors
541(5)
18.2.1 Deposition of polycrystalline lead salts
541(1)
18.2.2 Fabrication
542(2)
18.2.3 Performance
544(2)
18.3 p-n junction photodiodes
546(9)
18.3.1 Performance limit
546(5)
18.3.2 Technology and properties
551(1)
18.3.2.1 Diffused photodiodes
551(2)
18.3.2.2 Ion implantation
553(1)
18.3.2.3 Heterojunctions
553(2)
18.4 Schottky-barrier photodiodes
555(7)
18.4.1 Schottky barrier controversial issue
555(2)
18.4.2 Technology and properties
557(5)
18.5 Unconventional thin-film photodiodes
562(3)
18.6 Tunable resonant cavity enhanced detectors
565(2)
18.7 Lead salts versus HgCdTe
567(2)
References
569(10)
19 Quantum well infrared photodetectors
579(52)
19.1 Low dimensional solids: Background
579(5)
19.2 Multiple quantum wells and superlattices
584(8)
19.2.1 Compositional superlattices
584(3)
19.2.2 Doping superlattices
587(1)
19.2.3 Intersubband optical transitions
587(4)
19.2.4 Intersubband relaxation time
591(1)
19.3 Photoconductive QWIP
592(16)
19.3.1 Fabrication
594(1)
19.3.2 Dark current
595(5)
19.3.3 Photocurrent
600(1)
19.3.4 Detector performance
601(4)
19.3.5 QWIP versus HgCdTe
605(3)
19.4 Photovoltaic QWIP
608(3)
19.5 Superlattice miniband QWIP
611(1)
19.6 Light coupling
612(3)
19.7 Related devices
615(9)
19.7.1 p-doped GaAs/AlGaAs QWIPs
615(1)
19.7.2 Hot-electron transistor detectors
616(1)
19.7.3 SiGe/Si QWIPs
617(2)
19.7.4 QWIPs with other material systems
619(1)
19.7.5 Multicolor detectors
620(3)
19.7.6 Integrated QWIP-LED
623(1)
References
624(7)
20 Superlattice detectors
631(40)
20.1 HgTe/HgCdTe superlattices
632(5)
20.1.1 Material properties
632(4)
20.1.2 Superlattice photodiodes
636(1)
20.2 Type II superlattices
637(10)
20.2.1 Physical properties
640(7)
20.3 InAs/GaSb superlattice photodiodes
647(10)
20.3.1 MWIR photodiodes
649(4)
20.3.2 LWIR photodiodes
653(4)
20.4 InAs/InAsSb superlattice photodiodes
657(1)
20.5 Device passivation
658(4)
20.6 Noise mechanisms in type II superlattice photodetectors
662(2)
References
664(7)
21 Quantum dot infrared photodetectors
671(18)
21.1 QDIP preparation and principle of operation
671(2)
21.2 Anticipated advantages of QDIPs
673(1)
21.3 QDIP model
674(6)
21.4 Performance of QDIPs
680(3)
21.4.1 product
680(1)
21.4.2 Detectivity at 78 K
680(1)
21.4.3 Performance at higher temperature
681(2)
21.5 Colloidal QDIPs
683(2)
References
685(4)
22 Infrared barrier photodetectors
689(26)
22.1 SWIR barrier detectors
689(2)
22.2 InAsSb barrier detectors
691(3)
22.3 InAs/GaSb type II barrier detectors
694(6)
22.4 Barrier detectors versus HgCdTe photodiodes
700(11)
22.4.1 X rdiff product as the figure of merit of diffusion-limited photodetector
703(1)
22.4.2 Dark current density
704(3)
22.4.3 Noise equivalent difference temperature
707(1)
22.4.4 Comparison with experimental data
708(3)
References
711(4)
23 Cascade infrared photodetectors
715(14)
23.1 Multistage infrared detectors
715(1)
23.2 Type II superlattice interband cascade infrared detectors
716(8)
23.2.1 Principle of operation
717(2)
23.2.2 MWIR interband cascade detectors
719(2)
23.2.3 LWIR interband cascade detectors
721(3)
23.3 Performance comparison with HgCdTe HOT photodetectors
724(2)
References
726(3)
PART IV INFRARED FOCAL PLANE ARRAYS
729(198)
24 Overview of focal plane array architectures
731(42)
24.1 Focal plane array overview
732(3)
24.2 Monolithic arrays
735(5)
24.2.1 CCD devices
735(2)
24.2.2 CMOS devices
737(3)
24.3 Hybrid arrays
740(4)
24.4 Readout integrated circuits
744(6)
24.5 Performance of focal plane arrays
750(7)
24.5.1 Modulation transfer function
750(1)
24.5.2 Noise equivalent difference temperature
750(5)
24.5.3 NEDT limited by readout circuit
755(1)
24.5.3.1 Readout-limited NEDT for HgCdTe photodiode and QWIP
756(1)
24.6 Toward small pixel focal plane arrays
757(10)
24.6.1 SWaP considerations
765(2)
24.7 Adaptive focal plane arrays
767(2)
References
769(4)
25 Thermal detector focal plane arrays
773(40)
25.1 Thermopile focal plane arrays
775(3)
25.2 Bolometer focal plane arrays
778(16)
25.2.1 Trade-off between sensitivity, response time, and detector size
780(4)
25.2.2 Manufacturing techniques
784(3)
25.2.3 FPA performance
787(7)
25.3 Pyroelectric focal plane arrays
794(8)
25.3.1 Linear arrays
795(2)
25.3.2 Hybrid architecture
797(1)
25.3.3 Monolithic architecture
798(4)
25.4 Packaging
802(2)
25.5 Novel uncooled focal plane arrays
804(2)
References
806(7)
26 Photon detector focal plane arrays
813(78)
26.1 Intrinsic silicon arrays
813(11)
26.2 Extrinsic silicon and germanium arrays
824(6)
26.3 Photoemissive arrays
830(6)
26.4 III-V focal plane arrays
836(10)
26.4.1 InGaAs arrays
837(3)
26.4.2 InSb arrays
840(1)
26.4.2.1 Hybrid arrays
840(3)
26.4.2.2 Monolithic InSb arrays
843(3)
26.5 HgCdTe focal plane arrays
846(11)
26.5.1 Monolithic focal plane arrays
848(1)
26.5.2 Hybrid focal plane arrays
849(8)
26.6 Lead salt arrays
857(5)
26.7 Quantum well infrared photoconductor arrays
862(3)
26.8 Barrier detector and type-II superlattice focal plane arrays
865(7)
26.9 HgCdTe versus III-Vs---future prospect
872(7)
26.9.1 p-i-n HgCdTe photodiodes
874(2)
26.9.2 Manufacturability of focal plane arrays
876(1)
26.9.3 Conclusions
877(2)
References
879(12)
27 Third-generation infrared detectors
891(36)
27.1 Requirements of third-generation detectors
892(4)
27.2 HgCdTe multicolor detectors
896(10)
27.2.1 Dual-band HgCdTe detectors
897(6)
27.2.2 Three-color HgCdTe detectors
903(3)
27.3 Multiband quantum well infrared photoconductors
906(8)
27.4 Multiband type-II InAs/GaSb detectors
914(4)
27.5 Multiband quantum dot infrared photodetectors
918(3)
References
921(6)
PART V TERAHERTZ DETECTORS AND FOCAL PLANE ARRAYS
927(102)
28 Terahertz detectors and focal plane arrays
929(100)
28.1 Introduction
929(3)
28.2 Outlook on terahertz radiation specificity
932(3)
28.3 Trends in developments of terahertz detectors
935(3)
28.4 Direct and heterodyne terahertz detection
938(8)
28.4.1 Direct detection
941(1)
28.4.2 Heterodyne detection
942(4)
28.4.3 Heterodyne vs. direct detection
946(1)
28.5 Photoconductive terahertz generation and detection
946(2)
28.6 Room temperature terahertz detectors
948(23)
28.6.1 Schottky barrier diodes
952(6)
28.6.2 Pyroelectric detectors
958(2)
28.6.3 Microbolometers
960(5)
28.6.4 Field-effect transistor detectors
965(6)
28.7 Extrinsic detectors
971(1)
28.8 Pair braking photon detectors
972(4)
28.9 Microwave kinetic inductance detectors
976(3)
28.10 Semiconductor bolometers
979(5)
28.10.1 Semiconductor hot electron bolometers
983(1)
28.11 Superconducting bolometers
984(6)
28.11.1 Superconducting hot-electron bolometers
985(5)
28.12 Transition edge sensor bolometers
990(5)
28.13 Novel terahertz detectors
995(34)
28.13.1 Novel nanoelectronic detectors
995(2)
28.13.1.1 Quantum dot detectors
997(1)
28.13.1.2 Charge-sensitive IR phototransistors
998(3)
28.13.2 Graphene detectors
1001(1)
28.13.2.1 Relevant graphene properties
1001(2)
28.13.2.2 Photodetection mechanisms in graphene detectors
1003(5)
28.13.2.3 Responsivity enhanced graphene detectors
1008(1)
28.13.2.4 Related 2D material detectors
1008(4)
28.13.2.5 Graphene detector performance-the present status
1012(17)
References
1029(1)
Final Remarks 1029(2)
Index 1031
Antoni Rogalski is a professor at the Institute of Applied Physics, Military University of Technology in Warsaw, Poland. He is one of the worlds leading researchers in the field of infrared (IR) optoelectronics. He has made pioneering contributions in the area of theory, design and technology of different types of IR detectors. In 1997, he received an award from the Foundation for Polish Science, the most prestigious scientific award in Poland, for achievements in the study of ternary alloy systems for infrared detectors. In 2004, he was elected as a corresponding member of the Polish Academy of Sciences. Prof. Rogalski is a Fellow of the International Society for Optical Engineering (SPIE), Vice President of the Polish Optoelectronic Committee, Vice President of the Electronic and Telecommunication Division at the Polish Academy of Science, Editor-in-Chief of Opto-Electronics Review, and editorial board member of international journals. He has been chair and co-chair, organizer and member of scientific committees of many national and international conferences on optoelectronic devices and material sciences.