Muutke küpsiste eelistusi

E-raamat: Innovation in Near-Surface Geophysics: Instrumentation, Application, and Data Processing Methods

Edited by (Institute for Archaeological and Monumental Heritage, IBAM-CNR, Italy), Edited by (Institute for Technologies Applied to Cultural Heritage, ITABC CNR, Italy), Edited by (Geophysics Team, Historic England, UK)
  • Formaat: PDF+DRM
  • Ilmumisaeg: 05-Oct-2018
  • Kirjastus: Elsevier Science Publishing Co Inc
  • Keel: eng
  • ISBN-13: 9780128124307
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 156,97 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 05-Oct-2018
  • Kirjastus: Elsevier Science Publishing Co Inc
  • Keel: eng
  • ISBN-13: 9780128124307
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Innovation in Near-Surface Geophysics: Instrumentation, Application, and Data Processing Methods offers an advanced look at state-of-the-art and innovative technologies for near surface geophysics, exposing the latest, most effective techniques in an accessible way. By addressing a variety of geophysical applications, including cultural heritage, civil engineering, characteristics of soil, and others, the book provides an understanding of the best products and methodologies modern near surface geophysics has to offer. It proposes tips for new ideas and projects, and encourages collaboration across disciplines and techniques for the best implementation and results.

Clearly organized, with contributions from leaders from throughout geophysics, Innovation in Near-Surface Geophysics is an important guide for geophysicists who hope to gain a better understanding of the tools and techniques available.

  • Addresses a variety of applications in near-surface geophysics, including cultural heritage, civil engineering, soil analysis, and more
  • Provides insights into available products and techniques and offers suggestions for future developments
  • Clearly organized by techniques and their applications
Contributors xiii
Chapter 1 Passive and active electric methods: New frontiers of application 1(22)
Lara De Giorgi
Giovanni Leucci
1 Introduction
1(1)
2 About of Self Potential Method
2(5)
2.1 SP Field Data Acquisition
3(2)
2.2 SP Data Processing
5(2)
3 About Electrical Resistivity Method
7(2)
4 Electrical Resistivity Field Data Acquisition
9(8)
4.1 Some Field Application: The Archaeological Site of Sagalassos (Turkey)
13(4)
5 Conclusions
17(2)
References
19(2)
Further Reading
21(2)
Chapter 2 Advances in electric resistivity tomography: Theory and case studies 23(36)
Ettore Cardarelli
Giorgio De Donno
1 Introduction and Background
23(2)
2 Modeling, Data Acquisition, and Inversion
25(19)
2.1 Forward Modeling
25(6)
2.2 Data Acquisition
31(4)
2.3 Inversion
35(9)
3 Case Studies
44(7)
3.1 Archaeological Prospection
44(3)
3.2 Engineering Geology
47(4)
4 Conclusions
51(2)
References
53(4)
Further Reading
57(2)
Chapter 3 Time-domain reflectometry: Current uses and new possibilities 59(38)
Raffaele Persico
Andrea Cataldo
Egidio De Benedetto
1 Overview of TDR Applications
59(2)
2 Basic Principles
61(1)
3 Typical TDR Measurements
62(2)
4 TD/FD Combined Approach
64(1)
5 TDR in Frequency Domain
65(1)
6 Infinite Transmission Lines
66(6)
7 Finite Transmission Lines
72(5)
8 Higher Order Modes
77(2)
9 Investigation of Lossless and Dispersionless Materials
79(13)
10 Investigation of Lossy and/or Dispersive Materials
92(2)
11 Conclusions
94(1)
References
95(2)
Chapter 4 Geochemical constraints in near-surface geophysical surveying from in situ XRF spectrometry: Field trials at two aviation archaeology sites 97(24)
Adam D. Booth
Veerle Vandeginste
Dominic Pike
Russell Abbey
Roger A. Clark
Chris M. Green
Nathan Howland
1 Introduction
98(1)
2 X-Ray Fluorescence Spectroscopy-Theory and Methodology
99(1)
3 Survey Sites
100(3)
3.1 Site A
101(2)
3.2 Site B
103(1)
4 Survey Design and Implementation
103(4)
4.1 Geophysical Considerations
103(1)
4.2 Geochemical Considerations
104(2)
4.3 Survey Implementation
106(1)
5 Results
107(6)
5.1 Geophysical Surveys
107(2)
5.2 In Situ XRF Spectrometry
109(2)
5.3 Laboratory Comparison
111(2)
6 Interpretation and Discussion
113(2)
6.1 Integrated Geophysical and Geochemical Interpretation
113(1)
6.2 Controls on the Applicability of In Situ XRF Spectrometry
114(1)
6.3 Practicality of XRF Surveying
115(1)
7 Conclusions
115(1)
Acknowledgments
116(1)
References
116(3)
Further Reading
119(2)
Chapter 5 Advanced magnetic prospecting for archaeology with a vehicle-towed array of cesium magnetometers 121(30)
Neil Linford
Paul Linford
Andrew Payne
1 Introduction
121(1)
2 Methodology
122(4)
3 Field Acquisition
126(1)
4 Data Processing
126(2)
5 Case Studies
128(18)
5.1 Ham Hill, Somerset
129(4)
5.2 Marden Henge Environs, Wiltshire
133(1)
5.3 National Archaeological Identification Surveys (NAIS)
134(8)
5.4 Stonehenge Southern World Heritage Site
142(1)
5.5 Silchester Environs Project
143(3)
6 Conclusion
146(1)
References
147(4)
Chapter 6 Making sense of anomalies: Practices and challenges in the archaeological interpretation of geophysical data 151(44)
Lieven Verdonck
Philippe De Smedt
Jeroen Verhegge
1 Introduction
152(5)
1.1 Complex Relationship Between Measurements and Buried Features
152(4)
1.2 Archaeological Interpretation: A Subjective Process
156(1)
1.3 Aim of This
Chapter
157(1)
2 The Need to Ask Answerable Archaeological Questions
157(1)
3 Interpretability Relies on Careful Data Acquisition and Processing
158(3)
4 Enhancing the Interpretative Potential Through Data Combination
161(13)
4.1 Calculation of Attributes
161(2)
4.2 Combination of Different Geophysical and Remote Sensing Data Sets
163(4)
4.3 Evaluation by Means of Field Walking and Invasive Methods
167(4)
4.4 Legacy Data and Grey Literature
171(1)
4.5 Discussion
171(3)
5 Computer-Aided Object Detection
174(12)
5.1 Human Interpretation and Computer Vision
174(1)
5.2 Template Matching-Based Object Detection
175(2)
5.3 Segmentation and Object-Based Image Analysis
177(7)
5.4 Discussion
184(2)
6 Conclusion
186(1)
Acknowledgments
187(1)
References
187(8)
Chapter 7 Efficiency of the magnetic method in surveying desert sites in Egypt and Sudan: Case studies 195(58)
Tomasz Herbich
1 Desert Sites in Egypt and Sudan
195(1)
2 Types of Sites and Their Location
196(1)
3 Geological and Material Conditions of Magnetic Prospection
197(1)
4 Past and Present of Desert Site Prospection in Egypt and Sudan
198(2)
5 Measurement Methodology
200(1)
6 Case Studies
200(42)
6.1 Villages and Cities
202(7)
6.2 Palatial Centres: Soniyat and Usli
209(2)
6.3 Workers' Settlement: Dahshur
211(3)
6.4 Monastic Settlements
214(7)
6.5 Cemeteries and Cult Places
221(14)
6.6 Production Centers: Hierakonpolis
235(3)
6.7 Landscape Research
238(4)
7 Summary and Conclusions
242(2)
Acknowledgments
244(1)
References
245(6)
Further Reading
251(2)
Chapter 8 Advanced SFCW GPR systems 253(34)
Egil Eide
Neil Linford
Raffaele Persico
Jacopo Sala
1 Introduction
253(1)
2 Overview of the Step-Frequency Technique
254(2)
3 Setting of the System for Correct Measurements
256(2)
3.1 Dwell Time
256(1)
3.2 Frequency Step
256(1)
3.3 Number of Steps
257(1)
4 Frequency to Time Conversion
258(4)
5 Hardware of Step-Frequency Systems
262(11)
5.1 3D-Radar System
262(3)
5.2 Reconfigurable Systems
265(8)
6 Use of a Continuous Wave Step-Frequency GPR System and Multielement Antenna Array for Archaeological Surveys
273(8)
7 Conclusions
281(2)
References
283(4)
Chapter 9 Putting it all together: Geophysical data integration 287(54)
Kenneth L. Kvamme
Eileen G. Ernenwein
Jeremy G. Menzer
1 Data Integration in Archaeological Geophysics
288(1)
2 Archaeo-Geophysical Data
289(2)
2.1 Data Preprocessing
290(1)
3 Goals of Data Integration
291(2)
3.1 More Complete Visualizations
291(1)
3.2 Data Reduction and Simplification
291(1)
3.3 Context
292(1)
3.4 Improve Accuracy of Subsurface Feature Identifications
292(1)
3.5 A "Test" of Other Detection Methods
292(1)
3.6 Essential Data Needs and Improved Geophysical Understanding
293(1)
4 The Role of GIS
293(1)
5 Integrations by Data Type
294(6)
5.1 One Geophysical Data Set
294(1)
5.2 Integration of Multiple 2D Geophysical and Nongeophysical Data Sets
295(2)
5.3 Integrating Data to Include the Vertical or Depth Dimension
297(3)
6 Methods of 2D Integration
300(16)
6.1 Basic Integrations of Multidimensional Data
300(5)
6.2 Feature-Level Integrations
305(2)
6.3 Pixel-Level Integrations
307(9)
7 Case Studies
316(14)
7.1 Case Study 1: Feature- and Pixel-Level Integrations
317(3)
7.2 Case Study 2: Point Cloud Fusion
320(1)
7.3 Case Study 3: Automatic Feature Recognition
321(6)
7.4 Case Study 4: Exploring Local Statistics
327(3)
8 Conclusions
330(1)
Acknowledgments
331(1)
References
331(10)
Chapter 10 Ground-penetrating radar for the evaluation and monitoring of transport infrastructures 341(58)
Lara Pajewski
Simona Fontul
Mercedes Solla
1 Introduction
342(9)
2 Roads, Highways and Airport Runways
351(10)
2.1 Objectives and Methodology
351(3)
2.2 Combination of GPR With Complementary Nondestructive Testing Techniques
354(1)
2.3 Example and TU1208 Research Activities
355(6)
3 Railways
361(7)
3.1 Objectives and Methodology
362(1)
3.2 Combination of GPR With Complementary Nondestructive Testing Techniques
363(1)
3.3 Example and TU1208 Research Activities
363(5)
4 Bridges
368(9)
4.1 Objectives and Methodology
368(2)
4.2 Combination With Complementary Nondestructing Testing Techniques
370(2)
4.3 Example and TU1208 Research Activities
372(5)
5 Tunnels
377(4)
5.1 Objectives and Methodology
377(2)
5.2 Combination With Complementary Nondestructive Testing Techniques
379(1)
5.3 Research Activities Carried out Within COST Action TU1208
380(1)
6 Electromagnetic Modeling as a Tool for GPR Data Interpretation
381(7)
6.1 Objectives and Methodology
381(2)
6.2 Electromagnetic Simulators Developed in COST Action TU1208
383(2)
6.3 Example of Application
385(3)
7 Conclusions and Trends
388(2)
Acknowledgments
390(1)
References
390(9)
Chapter 11 THz imaging and data processing: State of the art and perspective 399(20)
Ilaria Catapano
Francesco Soldovieri
1 Introduction
399(2)
2 THz Measurement Setups and Configurations
401(1)
2.1 THz Pulsed Systems
401(1)
2.2 Continuous Wave THz Systems
402(1)
3 THz Imaging
402(3)
3.1 THz Diffraction Tomography
403(1)
3.2 THz Tomosynthesis
403(1)
3.3 THz Time of Flight
404(1)
3.4 THz Holography
404(1)
4 Enhanced THz Imaging
405(5)
4.1 Fourier Filter
405(1)
4.2 Singular Value Decomposition Filter
405(1)
4.3 A Comparative Example
406(4)
5 Test Cases
410(4)
5.1 THz for Artwork Characterization
410(2)
5.2 THz for Food Quality Control
412(2)
6 Conclusions and Perspectives
414(1)
References
415(4)
Chapter 12 Ambient noise techniques to study near-surface in particular geological conditions: a brief review 419(42)
D'Annico Sebastiano
Panzera Francesco
Martino Salvatore
lannucci Roberto
Paciello Antonella
Lombardo Giuseppe
Galea Pauline
Farrugia Daniela
1 Introduction
419(2)
2 Ambient Vibration Measurements in Mud Volcano Areas
421(5)
3 Ambient Vibration Measurements in Fault Zones
426(9)
4 Local Seismic Response in Landslide Involved Slopes
435(17)
5 Ambient Noise Measurements in Presence of Velocity Inversion
452(1)
Acknowledgments
452(1)
References
453(7)
Further Reading
460(1)
Chapter 13 Multimethodological approach to investigate urban and suburban archaeological sites 461(44)
Piro Salvatore
Papale Enrico
Zamuner Daniela
Kucukdemirci Melda
1 Introduction
462(3)
2 Integration Methods
465(5)
3 Ancient Appian Way Site
470(4)
3.1 Sites Characteristics
470(1)
3.2 Geophysical Surveys
470(2)
3.3 Data Processing and Results
472(2)
4 Data Integration Methods
474(6)
4.1 Qualitative Integration (Contour Maps Overlays and RGB)
474(1)
4.2 Discrete Quantitative Integration (Binary Sum and Cluster Analysis)
474(1)
4.3 Continuous Quantitative Integration (Sum, Product and Principal Component Analysis)
474(6)
5 Santa Balbina Site
480(1)
5.1 Site Characteristics
480(1)
5.2 Geophysical Surveys
480(1)
5.3 Data Processing and Results
481(1)
6 Data Integration Methods
481(3)
6.1 Qualitative Integration (Contour Maps Overlays and RGB)
481(1)
6.2 Discrete Quantitative Integration (Binary Sum and Cluster Analysis)
481(3)
6.3 Continuous Quantitative Integration (Sum, Product and Principal Component Analysis)
484(1)
7 Cerveteri Archeological Site
484(4)
7.1 Site Characteristics
484(2)
7.2 Geophysical Surveys
486(1)
7.3 Data Processing and Results
486(2)
8 Data Integration Methods
488(3)
8.1 Qualitative Integration (Contour Maps Overlays and RGB)
488(2)
8.2 Discrete Quantitative Integration (Binary Sum and Cluster Analysis)
490(1)
8.3 Continuous Quantitative Integration (Sum, Product and Principal Component Analysis)
490(1)
9 Heraion Archeological Site (Turkey)
491(2)
9.1 Site Characteristic
491(2)
9.2 Geophysical Surveys
493(1)
9.3 Data Processing and Results
493(1)
10 Data Integration Methods
493(3)
10.1 Qualitative Integration (Contour Maps Overlays and RGB)
496(1)
10.2 Discrete Quantitative Integration (Binary Sum and Cluster Analysis)
496(1)
10.3 Continuous Quantitative Integration (Sum, Product and Principal Component Analysis)
496(1)
11 Conclusions
496(5)
References
501(3)
Further Reading
504(1)
Index 505
Dr. Raffaele Persico is a research scientist at the Institute for Archaeological and Monumental Heritage IBAM-CNR and is fellow professor in probability and statistics at the International Telematic University Uninettuno UTIU. His main interests are noninvasive prospecting applied to cultural heritage, inversion approaches applied to GPR data, reconfigurable stepped frequency GPR systems, and TDR probes. He chaired the 13th International GPR Conference in 2010 and was publication chair of the 15th Mediterranean Microwave Symposium in 2015. He is president of the Italian Association of the GPR (www.gpritalia.it). Dr. Salvatore Piro is a research director in the Institute for Technologies Applied to Cultural Heritage. From 2012 until present, he has been a professor of applied geophysics at the Earth Science Department of Sapienza University of Rome. His research interests include the acquisition and processing of integrated geophysical methods for near surface investigations. He is a member of SEG, EAGE, Near Surface Geophysics, EGU, EEGS, and ISAP. He is also Associate Editor of the journals Near Surface Geophysics, Archaeological Prospection, International Journal of Geophysics, and Journal of Archaeology. Dr. Neil Linford is the senior geophysicist within Historic Englands Geophysics Team and provides advice on the use of geophysical methods within the historic environment, including field survey and application to standing buildings. His research interests include the use of multichannel ground penetrating radar, environmental magnetism, and high-sensitivity cesium magnetometer surveys, and he is currently an editor of the journal Archaeological Prospection.