Muutke küpsiste eelistusi

E-raamat: Innovative Approaches towards Ecological Coal Mining and Utilization

(Sichuan University, China), (Sichuan University, China), (Sichuan University, China)
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 26-Oct-2021
  • Kirjastus: Blackwell Verlag GmbH
  • Keel: eng
  • ISBN-13: 9783527825127
  • Formaat - EPUB+DRM
  • Hind: 156,78 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 26-Oct-2021
  • Kirjastus: Blackwell Verlag GmbH
  • Keel: eng
  • ISBN-13: 9783527825127

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Discover the most cutting-edge solutions to the environmental problems posed by coal

In Innovative Approaches towards Ecological Coal Mining and Utilization, a distinguished team of researchers delivers a comprehensive and fulsome exploration of the ecological problems caused by coal mining and utilization. The book discusses environmental pollution and carbon emissions in the context of modelling coal engineering issues, the design of innovative coal engineering systems, and the evaluation of innovative coal mining systems.

The authors consider the technical and economic viability of each proposed solution, making the book ideal reading for environmental and energy researchers in academic and industrial circles. Fully interdisciplinary, Innovative Approaches towards Ecological Coal Mining and Utilization offers readers an integrated look at the management science and policy simulation involved solutions to ecological problems caused by coal mining and utilization.

The included resources make full use of expansive case studies to illustrate the concepts discussed in the book, as well as robust economic analyses of the various technologies. Readers will also discover:





A thorough introduction to ecological coal mining and developing trends in ecological coal utilization Comprehensive explorations of innovative approaches in coal mining and a multiple coal seams-oriented equilibrium strategy towards coal-water conflict resolution Practical discussions of seasonal change-oriented dynamic strategies towards coal-water conflict resolution and GIS-oriented equilibrium strategies for coal gangue contamination mitigation In-depth examinations of carbon dioxide emission reduction in coal-fired power operations

Perfect for environmental and water chemists, mining specialists, and chemical engineers, Innovative Approaches towards Ecological Coal Mining and Utilization will also prove to be an invaluable addition to the libraries of process engineers seeking the latest information on solutions to the environmental problems caused by coal mining and utilization.
Preface xiii
Acknowledgments xvii
1 Technical Developing Pathway of Ecological Coal Mining 1(18)
1.1 Background Introduction
1(2)
1.2 Coal Mining Technology Development
3(8)
1.2.1 Literature Analyses
3(4)
1.2.1.1 Data Analysis System
4(1)
1.2.1.2 Knowledge Diagram
5(2)
1.2.2 Three Periods of Coal Mining Technology
7(14)
1.2.2.1 Competition Phase
8(1)
1.2.2.2 Diffusion Phase
8(1)
1.2.2.3 Shift Phase
9(2)
1.3 Discussion
11(3)
References
14(5)
2 Developing Trending Toward Ecological Coal Utilization 19(18)
2.1 Background Introduction
19(2)
2.2 Coal Utilization Evolution
21(7)
2.2.1 Initial Technological Competition
24(2)
2.2.2 Fierce Innovative Diffusion
26(2)
2.3 Coal Utilization Development Trends
28(4)
2.3.1 Disruptive Integrated Shift
28(2)
2.3.2 No-Coal-on-Ground Integrated Energy System
30(2)
2.4 Discussion
32(1)
References
33(4)
3 Multiple Coal Seam Coproduction-Oriented Equilibrium Approach Toward Coal-Water Conflict 37(26)
3.1 Background Review
38(2)
3.1.1 Multiple Coal Seam Production System
38(1)
3.1.2 Mining Quota Allocation Scheme
38(1)
3.1.3 Uncertain Condition
39(1)
3.2 Modeling
40(9)
3.2.1 Motivation for Employing Uncertain Variables
40(2)
3.2.2 Typical Fuzzy Variables in the Proposed Method
42(1)
3.2.3 Assumptions and Notations
43(1)
3.2.3.1 Assumptions
43(1)
3.2.3.2 Notations
43(1)
3.2.4 Lower Level Decision-Making Model
43(4)
3.2.4.1 Objective Function
43(2)
3.2.4.2 Constraints
45(2)
3.2.5 Upper Level Decision Making Model
47(1)
3.2.5.1 Objective
47(1)
3.2.5.2 Constraints
47(1)
3.2.6 Global Optimization Model
48(1)
3.3 Solution Approach
49(3)
3.3.1 Parameters Defuzzification
50(1)
3.3.2 KKT Condition Transformation
51(1)
3.4 Case Study
52(7)
3.4.1 Presentation of Case Problem
52(2)
3.4.2 Data Collection
54(1)
3.4.3 Results for Different Scenarios
55(4)
3.4.3.1 Scenario 1: Water Quality Standards I
55(1)
3.4.3.2 Scenario 2: Water Quality Standards II
55(4)
3.5 Discussion
59(3)
3.5.1 Propositions and Analysis
59(2)
3.5.2 Management Recommendations
61(1)
References
62(1)
4 Seasonal Changes-Oriented Dynamic Strategy Toward Coal-Water Conflict Resolutions 63(26)
4.1 Background Expression
63(2)
4.2 Methodology
65(10)
4.2.1 Key Problem Statement
65(1)
4.2.2 Modeling
66(8)
4.2.2.1 Assumption
66(1)
4.2.2.2 Notations
66(2)
4.2.2.3 Logical Representation for the Collieries
68(3)
4.2.2.4 Logical Representation for the Authority
71(2)
4.2.2.5 Global Optimization Model for the EP-MQC
73(1)
4.2.3 Model Transformation
74(1)
4.3 Case Study
75(4)
4.3.1 Presentation of the Case Region
76(1)
4.3.2 Data Collection
76(1)
4.3.3 Results Under Different Situations
77(2)
4.4 Discussion
79(7)
4.4.1 Propositions and Analysis
79(5)
4.4.2 Policy Recommendations
84(2)
References
86(3)
5 GIS-Oriented Equilibrium Strategy Toward Coal Gangue Contamination Mitigating 89(32)
5.1 Review of Background
89(3)
5.2 Key Problem Statement
92(2)
5.3 Coal Gangue Facility Siting Method
94(11)
5.3.1 Identifying Candidate Sites Using GIS Technique
94(2)
5.3.2 Selecting the Optimal Site Using the Modeling Technique
96(7)
5.3.2.1 Assumptions
96(1)
5.3.2.2 Notations
96(1)
5.3.2.3 Model Formulation
97(6)
5.3.3 Model Transformation
103(2)
5.4 Case Study
105(9)
5.4.1 Case Region Presentation
105(1)
5.4.2 GIS Technique
106(1)
5.4.3 Modeling Technique
107(1)
5.4.4 Data Collection
107(2)
5.4.5 Computational Results and Analysis
109(5)
5.4.5.1 Scenario 1: α = 1.0
109(1)
5.4.5.2 Scenario 2: α = 0.9
109(3)
5.4.5.3 Scenario 3: α = 0.8
112(1)
5.4.5.4 Scenario 4: α = 0.7
112(1)
5.4.5.5 Scenario 5: α = 0.6
113(1)
5.5 Discussion
114(3)
5.5.1 Propositions
114(2)
5.5.2 Management Recommendations
116(1)
References
117(4)
6 Dynamic Investment Strategy Toward Emissions Reduction and Energy Conservation of Coal Mining 121(32)
6.1 Background Review
121(4)
6.1.1 Multi-system Consideration of Emission and Energy
122(1)
6.1.2 Multidimensional Consideration of Economic and Ecological Benefits
123(1)
6.1.3 Multi-stage Consideration of Environmental Investment
123(2)
6.2 Modeling
125(6)
6.2.1 Assumptions
125(1)
6.2.2 Notations
125(2)
6.2.3 Colliery Economic Benefit: Profit Objective
127(1)
6.2.4 Colliery Ecological Benefit: Emission Reduction and Energy Conservation
128(1)
6.2.5 Coal Production and Environmental Investment Activities
128(1)
6.2.6 State Process Control Colliery Operations
129(1)
6.2.7 Ecological Coal Mining Economic-Ecological Equilibrium Model
130(1)
6.3 Economic-Ecological Equilibrium Model Solution Approach
131(4)
6.3.1 General Parameterization
131(1)
6.3.2 Fuzzy Goals for the Multiobjective Model
132(1)
6.3.3 Standard and AM-Based PSO for Nonlinear Dynamic Model
133(2)
6.4 Case Study
135(8)
6.4.1 Case Description
135(1)
6.4.2 Parametrization
135(1)
6.4.3 Data Collection
136(2)
6.4.4 Results and Different Scenarios
138(5)
6.4.4.1 Results Analysis
138(1)
6.4.4.2 Sensitivity Analysis
138(5)
6.5 Discussion and Analysis
143(6)
6.5.1 Comprehensive Discussion for Results
143(5)
6.5.2 Management Implications
148(1)
References
149(4)
7 Carbon Dioxide Emissions Reduction-Oriented Integrated Coat-Fired Power Operation Method 153(34)
7.1 Background Review
153(2)
7.2 Key Problem Statement
155(2)
7.3 Modeling
157(8)
7.3.1 Assumptions
157(1)
7.3.2 ICPBD Strategy Intentions
157(3)
7.3.2.1 Maximizing Economic Benefit
157(3)
7.3.2.2 Minimizing CO2 Emissions
160(1)
7.3.3 ICPBD Strategy Limitations
160(3)
7.3.3.1 Coal Purchase Phase Restriction
160(1)
7.3.3.2 Coal Storage Phase Restrictions
160(1)
7.3.3.3 Coal Blending Phase Restrictions
161(2)
7.3.3.4 Coal Distribution Phase Restrictions
163(1)
7.3.4 Global Model
163(2)
7.4 Case Study
165(2)
7.4.1 Presentation of Case Region
165(1)
7.4.2 Model Transformation
165(2)
7.4.3 Data Collection
167(1)
7.5 Results and Discussion
167(16)
7.5.1 Results for Different Scenarios
167(6)
7.5.2 Propositions and Analysis
173(8)
7.5.3 Management Recommendations
181(2)
References
183(4)
8 Equilibrium Coal Blending Method Toward Multiple Air Pollution Reduction 187(38)
8.1 Background Presentation
187(12)
8.1.1 Relationship Among All the Stakeholders
189(1)
8.1.2 Decision Carrier Between All the Stakeholders
190(2)
8.1.3 Modeling
192(7)
8.1.3.1 Notations
192(1)
8.1.3.2 Objectives of the Authority
193(2)
8.1.3.3 Constrains of the Authority
195(1)
8.1.3.4 Objectives of the CPPs
196(1)
8.1.3.5 Constraints of the CPPs
197(1)
8.1.3.6 Global Optimization Model
198(1)
8.2 Case Study
199(4)
8.2.1 Presentation of the Case Region
200(1)
8.2.2 Model Transformation and Solution Approach
200(1)
8.2.3 Data Collection
201(2)
8.3 Results and Discussion
203(18)
8.3.1 Results Under Different Scenarios
203(3)
8.3.2 Propositions and Analysis
206(15)
8.3.3 Management Recommendations
221(1)
References
221(4)
9 Equilibrium Biomass-Coal Blending Method Toward Carbon Emissions Reduction 225(30)
9.1 Background Review
225(2)
9.2 Key Problem Statement
227(1)
9.3 Modeling
228(8)
9.3.1 Assumption
229(1)
9.3.2 Notations
229(1)
9.3.3 Model for the Local Authority
230(3)
9.3.3.1 Objective 1: Maximizing Financial Revenue
230(1)
9.3.3.2 Objective 2: Minimizing Carbon Emissions
231(1)
9.3.3.3 Limitation on the CPPs' Operations
231(1)
9.3.3.4 Power Supply Demand Restriction
231(1)
9.3.3.5 Limitation on the Different Between the Quota and the Actual Emission
231(2)
9.3.4 Model for CPPs
233(2)
9.3.4.1 Objective: Maximizing Economic Benefits
233(1)
9.3.4.2 Combustion Efficiency Constraint
233(1)
9.3.4.3 Limitations on Fuel Quantities and Qualities
234(1)
9.3.4.4 Technical Constraint
234(1)
9.3.4.5 Social Responsibility Limitation
234(1)
9.3.4.6 Carbon Emissions Quota Constraint
234(1)
9.3.4.7 Fuel Resources Storage Limitation
235(1)
9.3.5 Global Model
235(1)
9.4 Case Study
236(4)
9.4.1 Case Description
236(1)
9.4.2 Model Transformation and Solution Approach
236(2)
9.4.3 Data Collection
238(2)
9.5 Results and Discussion
240(11)
9.5.1 Results Under Different Scenarios
243(1)
9.5.2 Propositions and Analyses
243(8)
9.5.3 Policy Implications
251(1)
References
251(4)
10 Carbon Emission Reduction-Oriented Equilibrium Strategy for Thermal-Hydro-Wind Generation System 255(30)
10.1 Background Introduction
255(4)
10.2 Modeling
259(8)
10.2.1 Notations
259(2)
10.2.2 Objectives
261(2)
10.2.2.1 Carbon Emissions Reduction
261(1)
10.2.2.2 Water Resources Wastes
261(1)
10.2.2.3 Wind Power Utilization
262(1)
10.2.2.4 Power Supply Balance
262(1)
10.2.3 Constraint
263(4)
10.2.3.1 Constraints of Wind Power
263(1)
10.2.3.2 Constraints of Coal-Combusted Power Plants
263(1)
10.2.3.3 Constraint of Hydropower Station
264(1)
10.2.3.4 Constraints of Hybrid Generation System
265(1)
10.2.3.5 Global Model
265(2)
10.3 Case Study
267(2)
10.3.1 Case Description
267(1)
10.3.2 Model Transformation
267(2)
10.4 Data Collection
269(1)
10.5 Result and Discussion
270(11)
10.5.1 Result Under Different Scenarios
271(1)
10.5.2 Comprehensive Discussion of Results
271(9)
10.5.3 Management Recommendations
280(1)
References
281(4)
11 Economic-Environmental Equilibrium-Based Wind-Solar-Thermal Power Generation System 285(36)
11.1 Background Introduction
285(2)
11.2 Key Problem Statement
287(3)
11.3 Modeling
290(8)
11.3.1 Notations
290(1)
11.3.2 Objectives
290(1)
11.3.2.1 Economic Profits
290(3)
11.3.2.2 Carbon Emissions
291(1)
11.3.2.3 Renewable Energy Utilization
291(2)
11.3.3 Constraints
293(3)
11.3.3.1 Constraints of Hybrid System
293(1)
11.3.3.2 Constraints of Thermal Power Plant
294(2)
11.3.3.3 Constraints of Wind Power Plant
296(1)
11.3.3.4 Constraints of Solar Power Plant
296(1)
11.3.4 Global Model
296(2)
11.4 Case Study
298(17)
11.4.1 Case Description
298(1)
11.4.2 Model Transformation
299(2)
11.4.3 Data Collection
301(2)
11.4.4 Results and Analysis
303(12)
11.5 Discussion
315(2)
11.5.1 Propositions and Analysis
315(1)
11.5.2 Management Recommendations
316(1)
References
317(4)
12 Carbon Emissions Reductions-Oriented Equilibrium Strategy for Municipal Solid Waste with Coal Co-combustion 321(32)
12.1 Background Introduction
321(2)
12.2 Key Problem Statement
323(3)
12.2.1 Conflict and Cooperation Between the Decision-Makers
323(1)
12.2.2 Trade-Off Between the Economy and the Environment
324(1)
12.2.3 Problem Analysis for MSW/Coal Co-combustion
324(2)
12.3 Modeling
326(7)
12.3.1 Assumptions
326(1)
12.3.2 Notations
326(1)
12.3.3 Allocation Scheme for the Authority
326(3)
12.3.3.1 Maximizing Financial Revenue
326(1)
12.3.3.2 Minimizing Carbon Emissions
327(1)
12.3.3.3 Electricity Supply Meeting Demand
327(1)
12.3.3.4 Requirements for the MSWACPPs' Operating Rights
328(1)
12.3.4 Production Strategy for MSWACPPs
329(2)
12.3.4.1 Pursuing Maximum Profits
329(1)
12.3.4.2 Coal's Inhibitory Effect on Dioxin Emissions
329(1)
12.3.4.3 Dioxin Emissions Risk Control
330(1)
12.3.4.4 Limited Carbon Emissions Quota
330(1)
12.3.4.5 Social Responsibility
330(1)
12.3.4.6 Fuel Quality Required by the Incinerators
331(1)
12.3.4.7 Limited Fuel Quantity
331(1)
12.3.5 Global Model
331(2)
12.4 Case Study
333(11)
12.4.1 Case Description
333(1)
12.4.2 Model Transformation and Solution Approach
333(2)
12.4.3 Data Collection
335(1)
12.4.4 Results Under Different Scenarios
336(8)
12.5 Discussion
344(5)
12.5.1 Propositions and Analysis
344(1)
12.5.2 Management Recommendations
345(4)
References
349(4)
Index 353
Jiuping Xu is Professor at Sichuan University. He obtained his first Ph. D. degree in applied mathematics at Tsinghua University, then obtained his second Ph. D. degree in physical chemistry at Sichuan University. Through combining the theories and methodologies of system science and mathematics, he built the decision and technology innovation paradigm, which is called "Theory Spectrum-Model Group-Algorithm Cluster" ("TS-MG-AC") paradigm, for the complex energy development and environmental protection problems with multivariant subject, multilevel structure, multiplicity objective, and multistage process. He also developed the "multivariant-multilevel-dynamic equilibrium" organization management technology, and has overcome pressing and major problems in the fields of energy related real-world problems. He has published more than 600 peer-reviewed journal articles and over 40 books.

Prof. Heping Xie worked as the former president of Sichuan University (2003-2017). He is the Academician of Chinese Academy of Engineering since 2001. He has received over 40 prizes. Until now, he has published more than 100 peer-reviewed research articles and 6 academic monographs in both English and Chinese.

Chengwei Lv is a PhD candidate at School of Business, Sichuan University. He is now a visiting scholar at The Joseph M. Katz Graduate School of Business, University of Pittsburgh. His research focuses on integrating game theory and dynamic control theory into coal industry to achieve cleaner production. Until now, he has published 21 peer-reviewed papers.