Muutke küpsiste eelistusi

E-raamat: Insight into Magnetorheological Shock Absorbers

  • Formaat: PDF+DRM
  • Ilmumisaeg: 27-Dec-2014
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319132334
  • Formaat - PDF+DRM
  • Hind: 110,53 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 27-Dec-2014
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319132334

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book deals with magnetorheological fluid theory, modeling and applications of automotive magnetorheological dampers. On the theoretical side a review of MR fluid compositions and key factors affecting the characteristics of these fluids is followed by a description of existing applications in the area of vibration isolation and flow-mode shock absorbers in particular. As a majority of existing magnetorheological devices operates in a so-called flow mode a critical review is carried out in that regard. Specifically, the authors highlight common configurations of flow-mode magnetorheological shock absorbers, or so-called MR dampers that have been considered by the automotive industry for controlled chassis applications. The authors focus on single-tube dampers utilizing a piston assembly with one coil or multiple coils and at least one annular flow channel in the piston.
1 Introduction
1(12)
1.1 Background
1(4)
1.2 MR Fluid Operation Modes
5(2)
1.3 MR Dampers
7(3)
1.4 Summary
10(3)
2 MR Fluids
13(12)
2.1 Introduction
13(1)
2.2 Mechanisms of the MR Effect
13(3)
2.3 MR Materials
16(5)
2.3.1 Liquid Phase
17(1)
2.3.2 Solid Phase
17(2)
2.3.3 Additives
19(2)
2.4 Rheology of MR Fluids
21(1)
2.5 Figures of Merit
22(1)
2.6 Summary
23(2)
3 Configurations of MR Dampers
25(26)
3.1 Background
25(1)
3.2 Damper Structures
26(6)
3.2.1 Mono-tube Dampers
26(2)
3.2.2 Double-tube Dampers
28(3)
3.2.3 Sensory Damper Structures
31(1)
3.3 MR Control Valves
32(17)
3.3.1 Single-coil Control Valve
33(2)
3.3.2 Multiple Coils and Multi-stage Cores
35(1)
3.3.3 Secondary Flow Paths
36(2)
3.3.4 Multiple Parallel Flow Paths
38(1)
3.3.5 Segmented Core
39(1)
3.3.6 Buried Coils
39(2)
3.3.7 Fail-Safe Valves
41(2)
3.3.8 Valves with Large Fluid Activation Area Ratio
43(2)
3.3.9 Asymmetric MR Valve
45(2)
3.3.10 Velocity- and Field-Sensing Valves
47(2)
3.4 Summary
49(2)
4 Modelling of Control Valves
51(42)
4.1 Background
51(2)
4.2 Application of Nondimensional Groups
53(21)
4.2.1 Bingham Plastic Model
57(5)
4.2.2 Bi-plastic Bingham Model
62(8)
4.2.3 Herschel--Bulkley Model
70(4)
4.3 Computing Schemes for Control Valves
74(11)
4.3.1 Single Gap Control Valve
74(4)
4.3.2 Control Valve with Leakage Flow Paths
78(4)
4.3.3 Multiple Parallel Flow Paths
82(3)
4.4 Mathematical Model for an Electro-Magnetic Circuit of Control Valves
85(7)
4.4.1 Field Model
86(2)
4.4.2 Magnetostatic Lumped Parameter Model
88(2)
4.4.3 Electrical Network
90(2)
4.5 Summary
92(1)
5 Damper Modelling
93(24)
5.1 Background
93(9)
5.1.1 Single-Tube Damper
95(4)
5.1.2 Double-Tube Damper
99(3)
5.2 Damper Behaviour Simulations
102(13)
5.2.1 Single-Tube Damper
102(1)
5.2.2 Geometry, Material Properties
102(1)
5.2.3 Results
103(6)
5.2.4 Twin-Tube Damper
109(1)
5.2.5 Geometry, Material Properties
109(3)
5.2.6 Results
112(3)
5.3 Summary
115(2)
6 CFD Study of the Flow of MR Fluids
117(14)
6.1 Background
117(1)
6.2 Theory
118(1)
6.3 Flow Simulations
119(11)
6.3.1 Test Geometry and Material Properties
119(3)
6.3.2 Results
122(8)
6.4 Summary
130(1)
7 Power Drivers for MR Dampers
131(14)
7.1 Introduction
131(1)
7.2 Damper Electrical Circuit Response Subjected to Controlled Voltage Inputs
132(6)
7.3 Experimental Testing and Analysis
138(6)
7.3.1 Measurement and Control System
138(1)
7.3.2 Results and Analysis
139(1)
7.3.3 Open Loop System
140(1)
7.3.4 Current Driver
141(3)
7.4 Summary
144(1)
8 Experimental Verification of an MR Monotube Damper Model
145(28)
8.1 Experimental Studies
146(12)
8.1.1 Damper Geometry, Test Inputs
146(3)
8.1.2 Damper Response to Sinusoidal Displacement Inputs
149(5)
8.1.3 Damper Response to Step Current Inputs
154(4)
8.2 Monotube Damper Model Verification
158(12)
8.2.1 Response to Sinusoidal Displacement Inputs
158(9)
8.2.2 Transient Response
167(3)
8.3 Summary
170(3)
9 Energy Harvesting MR Dampers
173(30)
9.1 Introduction
173(4)
9.2 Power Generator
177(8)
9.3 Damper
185(3)
9.4 Conditioning Electronics
188(5)
9.5 EH-LMR Damper
193(7)
9.6 Summary
200(3)
10 Concluding Remarks
203(4)
Appendix A Sliding Friction Model 207(4)
Glossary 211(2)
References 213