Muutke küpsiste eelistusi

E-raamat: Inspired by Biology: From Molecules to Materials to Machines

  • Formaat: 170 pages
  • Ilmumisaeg: 17-Jun-2008
  • Kirjastus: National Academies Press
  • Keel: eng
  • ISBN-13: 9780309117050
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 59,15 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 170 pages
  • Ilmumisaeg: 17-Jun-2008
  • Kirjastus: National Academies Press
  • Keel: eng
  • ISBN-13: 9780309117050
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Scientists have long desired to create synthetic systems that function with the precision and efficiency of biological systems. Using new techniques, researchers are now uncovering principles that could allow the creation of synthetic materials that can perform tasks as precise as biological systems. To assess the current work and future promise of the biology-materials science intersection, the Department of Energy and the National Science Foundation asked the NRC to identify the most compelling questions and opportunities at this interface, suggest strategies to address them, and consider connections with national priorities such as healthcare and economic growth. This book presents a discussion of principles governing biomaterial design, a description of advanced materials for selected functions such as energy and national security, an assessment of biomolecular materials research tools, and an examination of infrastructure and resources for bridging biological and materials science.Table of Contents



Front Matter Summary 1 Introduction 2 Understanding Biomolecular Processes: Toward Principles That Govern Biomaterial Design 3 Advanced Functional Materials 4 Probes and Tools for Biomolecular Materials Research 5 Infrastructure and Resources 6 Conclusions and Recommendations Appendixes Appendix A: Statement of Task Appendix B: Biographies of Committee Members Appendix C: Committee Meeting Agendas Appendix D: Glossary
Summary 1(4)
Introduction
5(5)
Unifying Concepts
5(1)
Areas for Research
6(4)
Alternative and Renewable Energy
6(1)
Health and Medicine
7(1)
National Security
7(1)
Next-Generation Bioinspired Materials
8(1)
Enabling Tools
8(2)
Understanding Biomolecular Processes: Toward Principles that Govern Biomaterial Design
10(21)
Multiple Cooperative Interactions
11(4)
Cells
12(2)
Cell-mimetic Materials
14(1)
Processes Far from Equilibrium
15(2)
Design Principles for Mechanics
17(2)
Self-assembly, Directed Assembly, and Spatiotemporal Assembly
19(6)
Hierarchical Self-assembly
21(2)
Complex Spatiotemporal Assembly
23(2)
Self-replicating, Self-healing, and Evolving Materials
25(3)
Self-replicating Materials
26(1)
Self-healing Materials
27(1)
Materials That Evolve
27(1)
Opportunities and Challenges
28(2)
Suggested Reading
30(1)
Advanced Functional Materials
31(45)
Alternative and Renewable Energy from Biomolecular Materials and Proceses
32(16)
Biofuels and Processes
33(3)
Biomimetic Photosynthesis
36(5)
Biomolecular Motors
41(7)
Advanced Functional Materials in Health and Medicine
48(9)
Medical Diagnostics
49(2)
Targeted Drug Delivery, Targeted Imaging Systems, Targeted Radiation
51(3)
Neural Prosthetics
54(3)
Advanced Functional Materials and National Security
57(2)
Environmental Surveillance and Biosensing
57(1)
Functional Biomaterials for Decontamination and Protection
58(1)
Next-Generation Bioinspired Materials
59(12)
Supermaterials from Biology
59(8)
Materials That Mimic Proteins and Membranes
67(4)
Opportunities and Challenges
71(3)
Alternative and Renewable Energy
71(1)
Health and Medicine
72(1)
National Security
73(1)
Next-Generation Bioinspired Materials
74(1)
Suggested Reading
74(2)
Probes and Tools for Biomolecular Materials Research
76(40)
Three-Dimensional Electron Microscopy
78(3)
Hyperresolution Optical Microscopy
81(2)
X-ray Methods
83(4)
X-ray Tomography
84(1)
X-ray Diffraction
85(1)
Small-Angle X-ray Scattering
86(1)
Neutron Scattering
87(3)
Single-Molecule Probes
90(5)
Single-Molecule Instrumentation
92(3)
Theory and Computation
95(9)
Modeling and Computer Simulation
97(4)
Access to High-Performance Computing Environments
101(1)
Informatics and Data Mining
102(1)
Public Domain Codes
102(1)
The Need for Theoretical Advances
102(2)
Synthesis of Biomolecular Materials
104(9)
Synthetic Methods for Materials Synthesis
105(2)
Materials Synthesis Using Natural Machinery
107(1)
Materials Synthesis Using a Natural Toolbox
108(1)
Macromolecular Assembly Routes
109(4)
Opportunities and Challenges
113(2)
Suggested Reading
115(1)
Infrastructure and Resources
116(15)
Education and Training
117(3)
Mechanisms for Bridging Biological and Materials Sciences
120(2)
Shared Resources and Essential Facilities
122(3)
Partnership Among Industry, Academia, and the National Laboratories
125(1)
Commercialization of Biomolecular Materials
126(5)
Biomolecular Properties, Processes, and Products
126(1)
Manufacturability and Production
127(1)
Specific Biomolecular Material Product Areas
127(2)
Challenges and Opportunities in Commercialization
129(2)
Conclusions and Recommendations
131(1)
Supporting Interdisciplinary Research
132(1)
Developing and Evaluating Programs for Interdisciplinary Education
133(2)
Emphasizing Both Fundamental and Applied Sciences
135(1)
Developing and Evaluating National Facilities Based on Midrange Instruments
135(4)
APPENDIXES
A Statement of Task
139(1)
B Biographies of Committee Members
140(6)
C Committee Meeting Agendas
146(3)
D Glossary
149
Committee on Biomolecular Materials and Processes, National Research Council