Abbreviations and Acronyms Index |
|
xvii | |
Preface |
|
xxiii | |
Authors |
|
xxv | |
Acknowledgments |
|
xxvii | |
|
Chapter 1 Concepts Of Instrumental Analytical Chemistry |
|
|
1 | (60) |
|
1.1 Introduction: What is Instrumental Analytical Chemistry? |
|
|
1 | (1) |
|
|
2 | (13) |
|
1.2.1 Defining the Problem |
|
|
3 | (1) |
|
1.2.1.1 Qualitative Analysis |
|
|
4 | (2) |
|
1.2.1.2 Quantitative Analysis |
|
|
6 | (3) |
|
1.2.2 Designing the Analytical Method |
|
|
9 | (1) |
|
|
10 | (3) |
|
|
13 | (1) |
|
|
13 | (1) |
|
|
14 | (1) |
|
|
14 | (1) |
|
|
15 | (14) |
|
1.3.1 Acid Dissolution and Digestion |
|
|
15 | (3) |
|
|
18 | (2) |
|
1.3.3 Dry Ashing and Combustion |
|
|
20 | (1) |
|
|
20 | (1) |
|
1.3.4.1 Solvent Extraction |
|
|
21 | (3) |
|
1.3.4.2 Solid Phase Extraction (SPE) |
|
|
24 | (1) |
|
|
25 | (1) |
|
1.3.4.4 Solid Phase Microextraction (SPME) |
|
|
26 | (3) |
|
1.4 Basic Statistics and Data Handling |
|
|
29 | (13) |
|
1.4.1 Accuracy and Precision |
|
|
29 | (1) |
|
|
30 | (1) |
|
1.4.2.1 Determinate Error |
|
|
30 | (3) |
|
1.4.2.2 Indeterminate Error |
|
|
33 | (1) |
|
1.4.3 Definitions for Statistics |
|
|
34 | (1) |
|
1.4.4 Quantifying Random Error |
|
|
35 | (4) |
|
1.4.4.1 Confidence Limits |
|
|
39 | (1) |
|
|
40 | (1) |
|
1.4.5 Rejection of Results |
|
|
41 | (1) |
|
1.5 Performing the Measurement |
|
|
42 | (3) |
|
|
42 | (3) |
|
1.6 Methods of Calibration |
|
|
45 | (9) |
|
1.6.1 Plotting Calibration Curves |
|
|
45 | (2) |
|
1.6.2 Calibration with External Standards |
|
|
47 | (2) |
|
1.6.3 Method of Standard Additions |
|
|
49 | (2) |
|
1.6.4 Internal Standard Calibration |
|
|
51 | (3) |
|
|
54 | (2) |
|
|
55 | (1) |
|
1.7.2 Limit of Quantitation |
|
|
56 | (1) |
|
|
56 | (2) |
|
|
58 | (3) |
|
Chapter 2 Introduction To Spectroscopy |
|
|
61 | (40) |
|
2.1 The Interaction Between Electromagnetic Radiation and Matter |
|
|
61 | (6) |
|
2.1.1 What is Electromagnetic Radiation? |
|
|
61 | (2) |
|
2.1.2 How Does Electromagnetic Radiation Interact with Matter? |
|
|
63 | (4) |
|
2.2 Atoms and Atomic Spectroscopy |
|
|
67 | (2) |
|
2.3 Molecules and Molecular Spectroscopy |
|
|
69 | (2) |
|
2.3.1 Rotational Transitions in Molecules |
|
|
69 | (1) |
|
2.3.2 Vibrational Transitions in Molecules |
|
|
70 | (1) |
|
2.3.3 Electronic Transitions in Molecules |
|
|
70 | (1) |
|
|
71 | (7) |
|
2.4.1 Deviations from Beer's Law |
|
|
74 | (1) |
|
2.4.2 Errors Associated with Beer's Law Relationships |
|
|
75 | (3) |
|
2.5 Optical Systems Used in Spectroscopy |
|
|
78 | (17) |
|
|
79 | (1) |
|
2.5.2 Wavelength Selection Devices |
|
|
79 | (1) |
|
|
79 | (1) |
|
|
80 | (3) |
|
2.5.2.3 Resolution Required to Separate Two Lines of Different Wavelength |
|
|
83 | (5) |
|
|
88 | (1) |
|
|
89 | (1) |
|
2.5.5 Single-Beam and Double-Beam Optics |
|
|
89 | (3) |
|
2.5.6 Dispersive Optical Layouts |
|
|
92 | (1) |
|
2.5.7 Fourier Transform Spectrometers |
|
|
93 | (2) |
|
2.6 Spectroscopic Technique and Instrument Nomenclature |
|
|
95 | (1) |
|
|
95 | (1) |
|
|
96 | (3) |
|
|
99 | (2) |
|
Chapter 3 Visible And Ultraviolet Molecular Spectroscopy |
|
|
101 | (62) |
|
|
101 | (11) |
|
3.1.1 Electronic Excitation in Molecules |
|
|
104 | (3) |
|
3.1.2 Absorption by Molecules |
|
|
107 | (1) |
|
|
108 | (1) |
|
3.1.4 The Shape of UV Absorption Curves |
|
|
109 | (2) |
|
3.1.5 Solvents for UV/VIS Spectroscopy |
|
|
111 | (1) |
|
|
112 | (22) |
|
|
112 | (1) |
|
|
113 | (2) |
|
|
115 | (1) |
|
|
115 | (1) |
|
3.2.4.1 Barrier Layer Cell |
|
|
115 | (2) |
|
3.2.4.2 Photomultiplier Tube |
|
|
117 | (1) |
|
3.2.4.3 Semiconductor Detectors: Diodes and Diode Array Systems |
|
|
118 | (2) |
|
|
120 | (1) |
|
|
121 | (1) |
|
|
122 | (1) |
|
3.2.5.1 Liquid and Gas Cells |
|
|
122 | (2) |
|
|
124 | (1) |
|
3.2.5.3 Flow-Through Samplers |
|
|
125 | (1) |
|
3.2.5.4 Solid Sample Holders |
|
|
126 | (1) |
|
3.2.5.5 Fiber Optic Probes |
|
|
126 | (1) |
|
3.2.6 Microvolume, Nanovolume and Hand-Held UV/VIS Spectrometers |
|
|
127 | (7) |
|
3.3 Analytical Applications |
|
|
134 | (10) |
|
3.3.1 Qualitative Structural Analysis |
|
|
134 | (1) |
|
3.3.2 Quantitative Analysis |
|
|
134 | (5) |
|
3.3.3 Multicomponent Determinations |
|
|
139 | (1) |
|
|
140 | (1) |
|
3.3.4.1 Reaction Kinetics |
|
|
140 | (1) |
|
3.3.4.2 Spectrophotometric Titrations |
|
|
141 | (1) |
|
3.3.4.3 Spectroelectrochemistry |
|
|
142 | (1) |
|
3.3.4.4 Analysis of Solids |
|
|
142 | (1) |
|
3.3.5 Measurement of Color |
|
|
142 | (2) |
|
3.4 Nephelometry and Turbidimetry |
|
|
144 | (2) |
|
3.5 Molecular Emission Spectrometry |
|
|
146 | (4) |
|
3.5.1 Fluorescence and Phosphorescence |
|
|
146 | (2) |
|
3.5.2 Relationship Between Fluorescence Intensity and Concentration |
|
|
148 | (2) |
|
3.6 Instrumentation for Luminescence Measurements |
|
|
150 | (3) |
|
3.6.1 Wavelength Selection Devices |
|
|
150 | (1) |
|
|
151 | (1) |
|
|
152 | (1) |
|
|
153 | (1) |
|
3.7 Analytical Applications of Luminescence |
|
|
153 | (3) |
|
3.7.1 Advantages of Fluorescence and Phosphorescence |
|
|
155 | (1) |
|
3.7.2 Disadvantages of Fluorescence and Phosphorescence |
|
|
155 | (1) |
|
|
156 | (1) |
|
|
157 | (4) |
|
|
161 | (2) |
|
Chapter 4 Infrared, Near-Infrared, And Raman Spectroscopy |
|
|
163 | (82) |
|
4.1 Absorption of IR Radiation by Molecules |
|
|
164 | (5) |
|
4.1.1 Dipole Moments in Molecules |
|
|
164 | (2) |
|
4.1.2 Types of Vibrations in Molecules |
|
|
166 | (2) |
|
|
168 | (1) |
|
|
169 | (15) |
|
|
172 | (1) |
|
|
173 | (1) |
|
|
174 | (1) |
|
|
175 | (1) |
|
|
175 | (1) |
|
4.2.2 Monochromators and Interferometers |
|
|
175 | (1) |
|
|
176 | (3) |
|
4.2.2.2 Interferometer Components |
|
|
179 | (2) |
|
|
181 | (1) |
|
|
182 | (1) |
|
4.2.3.2 Pyroelectric Detectors |
|
|
182 | (1) |
|
|
182 | (1) |
|
4.2.4 Detector Response Time |
|
|
183 | (1) |
|
|
184 | (12) |
|
4.3.1 Techniques for Transmission (Absorption) Measurements |
|
|
184 | (1) |
|
|
184 | (3) |
|
|
187 | (2) |
|
|
189 | (1) |
|
4.3.2 Background Correction in Transmission Measurements |
|
|
190 | (1) |
|
4.3.2.1 Solvent Absorption |
|
|
190 | (1) |
|
|
191 | (1) |
|
4.3.3 Techniques for Reflectance and Emission Measurements |
|
|
191 | (1) |
|
4.3.3.1 Attenuated Total Reflectance (ATR) |
|
|
191 | (2) |
|
4.3.3.2 Specular Reflectance |
|
|
193 | (1) |
|
4.3.3.3 Diffuse Reflectance |
|
|
194 | (1) |
|
|
195 | (1) |
|
|
196 | (4) |
|
4.5 Nondispersive IR Systems |
|
|
200 | (1) |
|
4.6 Analytical Applications of IR Spectroscopy |
|
|
201 | (8) |
|
4.6.1 Qualitative Analyses and Structural Determination by Mid-IR Absorption Spectroscopy |
|
|
202 | (4) |
|
4.6.2 Quantitative Analyses by IR Spectrometry |
|
|
206 | (3) |
|
|
209 | (8) |
|
|
210 | (1) |
|
4.7.2 NIR Vibrational Bands |
|
|
210 | (2) |
|
4.7.3 NIR Calibration: Chemometrics |
|
|
212 | (1) |
|
4.7.4 Sampling Techniques for NIR Spectroscopy |
|
|
213 | (1) |
|
4.7.4.1 Liquids and Solutions |
|
|
214 | (1) |
|
|
214 | (1) |
|
|
214 | (1) |
|
4.7.5 Applications of NIR Spectroscopy |
|
|
214 | (3) |
|
|
217 | (16) |
|
4.8.1 Principles of Raman Scattering |
|
|
217 | (2) |
|
4.8.2 Raman Instrumentation |
|
|
219 | (1) |
|
|
219 | (2) |
|
4.8.2.2 Dispersive Spectrometers Systems |
|
|
221 | (1) |
|
4.8.2.3 FT-Raman Spectrometers |
|
|
222 | (1) |
|
4.8.2.4 Fiber Optic-Based Modular and Handheld Systems |
|
|
223 | (1) |
|
4.8.2.5 Samples and Sample Holders for Raman Spectroscopy |
|
|
224 | (2) |
|
4.8.3 Applications of Raman Spectroscopy |
|
|
226 | (4) |
|
4.8.4 The Resonance Raman Effect |
|
|
230 | (1) |
|
4.8.5 Surface-Enhanced Raman Spectroscopy (SERS) |
|
|
231 | (1) |
|
|
232 | (1) |
|
4.9 Chemical Imaging Using NIR, IR, and Raman Spectroscopy |
|
|
233 | (7) |
|
|
240 | (1) |
|
|
241 | (1) |
|
|
242 | (3) |
|
Chapter 5 Magnetic Resonance Spectroscopy |
|
|
245 | (58) |
|
5.1 Nuclear Magnetic Resonance Spectroscopy: Introduction |
|
|
245 | (10) |
|
5.1.1 Properties of Nuclei |
|
|
246 | (1) |
|
5.1.2 Quantization of 1H Nuclei in a Magnetic Field |
|
|
247 | (3) |
|
5.1.2.1 Saturation and Magnetic Field Strength |
|
|
250 | (2) |
|
5.1.3 Width of Absorption Lines |
|
|
252 | (1) |
|
5.1.3.1 The Homogeneous Field |
|
|
252 | (1) |
|
|
253 | (1) |
|
5.1.3.3 The Chemical Shift |
|
|
254 | (1) |
|
5.1.3.4 Magic Angle Spinning |
|
|
254 | (1) |
|
5.1.3.5 Other Sources of Line Broadening |
|
|
254 | (1) |
|
|
255 | (3) |
|
|
258 | (5) |
|
|
263 | (6) |
|
|
269 | (6) |
|
|
269 | (3) |
|
|
272 | (1) |
|
|
272 | (2) |
|
5.5.4 RF Generation and Detection |
|
|
274 | (1) |
|
5.5.5 Signal Integrator and Computer |
|
|
274 | (1) |
|
5.6 Analytical Applications of NMR |
|
|
275 | (16) |
|
5.6.1 Samples and Sample Preparation for NMR |
|
|
275 | (1) |
|
5.6.2 Qualitative Analyses: Molecular Structure Determination |
|
|
276 | (1) |
|
5.6.2.1 Relationship Between the Area of a Peak and Molecular Structure |
|
|
276 | (1) |
|
5.6.2.2 Chemical Exchange |
|
|
277 | (1) |
|
5.6.2.3 Double Resonance Experiments |
|
|
277 | (3) |
|
|
280 | (2) |
|
5.6.3.1 Heteronuclear Decoupling |
|
|
282 | (1) |
|
5.6.3.2 The Nuclear Overhauser Effect |
|
|
282 | (1) |
|
5.6.3.3 13C NMR Spectra of Solids |
|
|
283 | (1) |
|
|
284 | (3) |
|
5.6.5 Qualitative Analyses: Other Applications |
|
|
287 | (1) |
|
5.6.6 Quantitative Analyses |
|
|
288 | (3) |
|
5.7 Hyphenated NMR Techniques |
|
|
291 | (1) |
|
|
292 | (2) |
|
5.9 Low-Field, Portable, and Miniature NMR Instruments |
|
|
294 | (3) |
|
|
297 | (1) |
|
|
298 | (1) |
|
|
298 | (2) |
|
|
300 | (3) |
|
Chapter 6 Atomic Absorption Spectrometry |
|
|
303 | (50) |
|
6.1 Absorption of Radiant Energy by Atoms |
|
|
303 | (3) |
|
|
305 | (1) |
|
6.1.2 Degree of Radiant Energy Absorption |
|
|
306 | (1) |
|
|
306 | (13) |
|
|
307 | (1) |
|
6.2.1.1 Hollow Cathode Lamp (HCL) |
|
|
307 | (2) |
|
6.2.1.2 Electrodeless Discharge Lamp (EDL) |
|
|
309 | (1) |
|
|
310 | (1) |
|
|
310 | (2) |
|
6.2.2.2 Electrothermal Atomizers |
|
|
312 | (2) |
|
|
314 | (1) |
|
6.2.3 Spectrometer Optics |
|
|
315 | (1) |
|
|
315 | (1) |
|
6.2.3.2 Optics and Spectrometer Configuration |
|
|
316 | (1) |
|
|
317 | (1) |
|
|
317 | (1) |
|
6.2.6 Commercial AAS Systems |
|
|
318 | (1) |
|
6.2.6.1 High-Resolution Continuum Source AAS |
|
|
319 | (1) |
|
6.3 The Atomization Process |
|
|
319 | (7) |
|
|
319 | (5) |
|
6.3.2 Graphite Furnace Atomization |
|
|
324 | (2) |
|
|
326 | (12) |
|
6.4.1 Non-Spectral Interferences |
|
|
326 | (1) |
|
6.4.1.1 Chemical Interference |
|
|
326 | (1) |
|
6.4.1.2 Matrix Interference |
|
|
327 | (1) |
|
6.4.1.3 Ionization Interference |
|
|
328 | (1) |
|
6.4.1.4 Non-Spectral Interferences in GFAAS |
|
|
328 | (2) |
|
6.4.1.5 Chemical Modification |
|
|
330 | (2) |
|
6.4.2 Spectral Interferences |
|
|
332 | (1) |
|
6.4.2.1 Atomic Spectral Interference |
|
|
332 | (1) |
|
6.4.2.2 Background Absorption and its Correction |
|
|
332 | (1) |
|
6.4.2.3 Continuum Source Background Correction |
|
|
333 | (2) |
|
6.4.2.4 Zeeman Background Correction |
|
|
335 | (1) |
|
6.4.2.5 Smith-Hieftje Background Correction |
|
|
336 | (1) |
|
6.4.2.6 Spectral Interferences In GFAAS |
|
|
337 | (1) |
|
6.5 Analytical Applications of AAS |
|
|
338 | (9) |
|
6.5.1 Qualitative Analysis |
|
|
338 | (1) |
|
6.5.2 Quantitative Analysis |
|
|
339 | (1) |
|
6.5.2.1 Quantitative Analytical Range |
|
|
339 | (1) |
|
|
339 | (2) |
|
6.5.3 Analysis of Samples |
|
|
341 | (1) |
|
|
341 | (1) |
|
|
342 | (2) |
|
|
344 | (1) |
|
6.5.3.4 Cold Vapor Mercury Technique |
|
|
345 | (1) |
|
6.5.3.5 Hydride Generation Technique |
|
|
346 | (1) |
|
6.5.3.6 Flow Injection Analysis |
|
|
346 | (1) |
|
6.5.3.7 Flame Microsampling |
|
|
347 | (1) |
|
|
347 | (2) |
|
|
349 | (1) |
|
|
350 | (3) |
|
Chapter 7 Atomic Emission Spectroscopy |
|
|
353 | (74) |
|
7.1 Flame Atomic Emission Spectroscopy |
|
|
353 | (9) |
|
7.1.1 Instrumentation for Flame OES |
|
|
354 | (1) |
|
|
355 | (1) |
|
7.1.1.2 Wavelength Selection Devices |
|
|
355 | (1) |
|
|
356 | (1) |
|
7.1.1.4 Flame Excitation Source |
|
|
356 | (2) |
|
|
358 | (1) |
|
7.1.2.1 Chemical Interference |
|
|
358 | (1) |
|
7.1.2.2 Excitation and Ionization Interferences |
|
|
358 | (1) |
|
7.1.2.3 Spectral Interferences |
|
|
359 | (1) |
|
7.1.3 Analytical Applications of Flame OES |
|
|
360 | (1) |
|
7.1.3.1 Qualitative Analysis |
|
|
360 | (1) |
|
7.1.3.2 Quantitative Analysis |
|
|
360 | (2) |
|
7.2 Atomic Optical Emission Spectroscopy |
|
|
362 | (20) |
|
7.2.1 Instrumentation for Emission Spectroscopy |
|
|
363 | (1) |
|
7.2.1.1 Electrical Excitation Sources |
|
|
364 | (4) |
|
|
368 | (1) |
|
|
369 | (5) |
|
|
374 | (2) |
|
7.2.2 Interferences in Arc and Spark Emission Spectroscopy |
|
|
376 | (1) |
|
7.2.2.1 Matrix Effects and Sample Preparation |
|
|
376 | (1) |
|
7.2.2.2 Spectral Interference |
|
|
377 | (1) |
|
7.2.2.3 Internal Standard Calibration |
|
|
377 | (1) |
|
7.2.3 Applications of Arc and Spark Emission Spectroscopy |
|
|
378 | (1) |
|
7.2.3.1 Qualitative Analysis |
|
|
378 | (1) |
|
|
378 | (3) |
|
7.2.3.3 Quantitative Analysis |
|
|
381 | (1) |
|
7.3 Plasma Emission Spectroscopy |
|
|
382 | (22) |
|
7.3.1 Instrumentation for Plasma Emission Spectrometry |
|
|
382 | (1) |
|
7.3.1.1 Excitation Sources |
|
|
382 | (4) |
|
7.3.1.2 Spectrometer Systems for Plasma Spectroscopy |
|
|
386 | (3) |
|
7.3.1.3 Sample Introduction Systems |
|
|
389 | (6) |
|
7.3.2 Calibration and Interferences in Plasma Emission Spectrometry |
|
|
395 | (2) |
|
7.3.2.1 Chemical and Ionization Interference |
|
|
397 | (1) |
|
7.3.2.2 Spectral Interference and Correction |
|
|
398 | (3) |
|
7.3.3 Applications of Atomic Emission Spectroscopy |
|
|
401 | (2) |
|
7.3.4 Chemical Speciation with Hyphenated Instruments |
|
|
403 | (1) |
|
7.4 Glow Discharge Emission Spectrometry |
|
|
404 | (2) |
|
7.4.1 DC And RF GD Sources |
|
|
404 | (1) |
|
7.4.2 Applications of GD Atomic Emission Spectrometry |
|
|
405 | (1) |
|
|
405 | (1) |
|
7.4.2.2 Depth Profile Analysis |
|
|
406 | (1) |
|
7.5 Atomic Fluorescence Spectroscopy |
|
|
406 | (6) |
|
7.5.1 Instrumentation for AFS |
|
|
409 | (1) |
|
7.5.2 Interferences in AFS |
|
|
410 | (1) |
|
7.5.2.1 Chemical Interference |
|
|
410 | (1) |
|
7.5.2.2 Spectral Interference |
|
|
411 | (1) |
|
7.5.3 Applications of AFS |
|
|
411 | (1) |
|
7.5.3.1 Mercury Determination and Speciation by AFS |
|
|
411 | (1) |
|
7.5.3.2 Hydride Generation and Speciation by AFS |
|
|
412 | (1) |
|
7.6 Laser-Induced Breakdown Spectroscopy (LIBS) |
|
|
412 | (7) |
|
7.6.1 Principle of Operation |
|
|
412 | (1) |
|
|
413 | (1) |
|
7.6.3 Applications of LIBS |
|
|
414 | (1) |
|
7.6.3.1 Qualitative Analysis |
|
|
415 | (1) |
|
7.6.3.2 Quantitative Analysis |
|
|
416 | (1) |
|
|
417 | (2) |
|
7.7 Atomic Emission Literature and Resources |
|
|
419 | (1) |
|
|
419 | (2) |
|
|
421 | (2) |
|
|
423 | (4) |
|
Chapter 8 X-Ray Spectroscopy |
|
|
427 | (92) |
|
8.1 Origin of X-ray Spectra |
|
|
427 | (12) |
|
8.1.1 Energy Levels in Atoms |
|
|
427 | (6) |
|
|
433 | (1) |
|
|
434 | (1) |
|
8.1.3.1 X-ray Absorption Process |
|
|
434 | (3) |
|
8.1.3.2 X-ray Fluorescence Process |
|
|
437 | (1) |
|
8.1.3.3 X-ray Diffraction Process |
|
|
438 | (1) |
|
|
439 | (51) |
|
|
439 | (1) |
|
|
440 | (4) |
|
8.2.1.2 Secondary XRF Sources |
|
|
444 | (1) |
|
8.2.1.3 Radioisotope Sources |
|
|
444 | (1) |
|
8.2.2 Instrumentation for Energy Dispersive X-ray Spectrometry |
|
|
445 | (1) |
|
8.2.2.1 Excitation Source |
|
|
446 | (1) |
|
8.2.2.2 Primary Beam Modifiers |
|
|
447 | (3) |
|
|
450 | (4) |
|
|
454 | (3) |
|
8.2.2.5 Multichannel Pulse Height Analyzer |
|
|
457 | (1) |
|
8.2.2.6 Detector Artifact Escape Peaks and Sum Peaks |
|
|
458 | (2) |
|
8.2.3 Instrumentation for Wavelength Dispersive X-ray Spectrometry |
|
|
460 | (1) |
|
|
461 | (1) |
|
8.2.3.2 Analyzing Crystals |
|
|
462 | (3) |
|
|
465 | (5) |
|
8.2.3.4 Electronic Pulse Processing Units |
|
|
470 | (1) |
|
|
471 | (1) |
|
8.2.4 Simultaneous WDXRF Spectrometers |
|
|
471 | (2) |
|
8.2.5 Micro-XRF Instrumentation |
|
|
473 | (1) |
|
8.2.5.1 Micro X-ray Beam Optics |
|
|
473 | (2) |
|
8.2.5.2 Micro-XRF System Components |
|
|
475 | (1) |
|
8.2.6 Total Reflection XRF |
|
|
476 | (1) |
|
8.2.7 Comparison Between EDXRF and WDXRF |
|
|
476 | (1) |
|
|
476 | (1) |
|
8.2.8.1 The Analyzed Layer |
|
|
477 | (2) |
|
8.2.8.2 Sample Preparation Considerations for XRF |
|
|
479 | (3) |
|
8.2.8.3 Qualitative Analysis by XRF |
|
|
482 | (5) |
|
8.2.8.4 Quantitative Analysis by XRF |
|
|
487 | (3) |
|
|
490 | (6) |
|
|
496 | (13) |
|
8.4.1 Single Crystal X-ray Diffractometry |
|
|
499 | (1) |
|
|
499 | (2) |
|
8.4.3 Crystal Structure Determination |
|
|
501 | (2) |
|
8.4.4 Powder X-ray Diffractometry |
|
|
503 | (1) |
|
8.4.5 Hybrid XRD/XRF Systems |
|
|
504 | (2) |
|
8.4.6 Applications of XRD |
|
|
506 | (3) |
|
|
509 | (2) |
|
|
511 | (1) |
|
|
512 | (5) |
|
|
517 | (2) |
|
Chapter 9 Mass Spectrometry |
|
|
519 | (84) |
|
|
520 | (7) |
|
9.1.1 Resolving Power and Resolution of a Mass Spectrometer |
|
|
525 | (2) |
|
|
527 | (1) |
|
A Brief Digression on Units of Measure---Vacuum Systems |
|
|
527 | (36) |
|
9.2.1 Sample Input Systems |
|
|
528 | (1) |
|
|
528 | (1) |
|
9.2.1.2 Direct Insertion and Direct Exposure Probes |
|
|
528 | (1) |
|
9.2.1.3 Chromatography and Electrophoresis Systems |
|
|
528 | (1) |
|
|
529 | (1) |
|
9.2.2.1 Electron Ionization (EI) |
|
|
529 | (1) |
|
9.2.2.2 Chemical Ionization (CI) |
|
|
530 | (1) |
|
9.2.2.3 Atmospheric Pressure Ionization (API) Sources |
|
|
531 | (4) |
|
9.2.2.4 Desorption Ionization |
|
|
535 | (5) |
|
9.2.2.5 Ionization Sources for Inorganic MS |
|
|
540 | (1) |
|
|
541 | (1) |
|
9.2.3.1 Magnetic and Electric Sector Instruments |
|
|
542 | (4) |
|
9.2.3.2 Time of Flight (TOF) Analyzer |
|
|
546 | (5) |
|
9.2.3.3 Quadrupole Mass Analyzer |
|
|
551 | (3) |
|
9.2.3.4 MS/MS and MS" Instruments |
|
|
554 | (2) |
|
9.2.3.5 Quadrupole Ion Trap |
|
|
556 | (1) |
|
9.2.3.6 Fourier Transform Ion-Cyclotron Resonance (FTICR) |
|
|
557 | (1) |
|
9.2.3.7 The Orbitrap™ TMMS |
|
|
558 | (1) |
|
|
559 | (1) |
|
9.2.4.1 Electron Multiplier |
|
|
560 | (2) |
|
|
562 | (1) |
|
|
562 | (1) |
|
9.3 Ion Mobility Spectrometry |
|
|
563 | (3) |
|
9.3.1 Handheld DMS Juno® Chemical Trace Vapor Point Detector |
|
|
564 | (1) |
|
9.3.2 The Excellims HPIMS-LC System |
|
|
564 | (1) |
|
9.3.3 Photonis Ion Mobility Spectrometer Engine |
|
|
565 | (1) |
|
9.3.4 Synapt G2-S Multistage MS System Incorporating the Triwave Ion Mobility Stage |
|
|
566 | (1) |
|
9.4 Applications of Molecular MS |
|
|
566 | (14) |
|
9.4.1 High-Resolution Mass Spectrometry |
|
|
570 | (2) |
|
9.4.1.1 Achieving Higher Mass Accuracy (but not Resolution) from Low Resolution MS Instruments |
|
|
572 | (1) |
|
9.4.1.2 Improving the Quantitation Accuracy of Isotope Ratios from Low Resolution MS Instrument Data Files |
|
|
572 | (1) |
|
9.4.2 Quantitative Analysis of Compounds and Mixtures |
|
|
573 | (3) |
|
9.4.3 Protein-Sequencing Analysis (Proteomics) |
|
|
576 | (1) |
|
|
577 | (1) |
|
9.4.5 Environmental Applications |
|
|
578 | (1) |
|
9.4.6 Other Applications of Molecular MS |
|
|
578 | (2) |
|
9.4.7 Limitations of Molecular MS |
|
|
580 | (1) |
|
|
580 | (18) |
|
9.5.1 Inductively Coupled Plasma Mass Spectrometry (ICP-MS) |
|
|
580 | (3) |
|
9.5.2 Applications of Atomic MS |
|
|
583 | (3) |
|
9.5.2.1 Geological and Materials Characterization Applications |
|
|
586 | (1) |
|
9.5.2.2 Speciation by Coupled Chromatography-ICP-MS |
|
|
587 | (1) |
|
9.5.2.3 Applications in Food Chemistry, Environmental Chemistry, Biochemistry, Clinical Chemistry, and Medicine |
|
|
588 | (2) |
|
9.5.2.4 Coupled Elemental Analysis-MS |
|
|
590 | (1) |
|
9.5.3 Interferences in Atomic MS |
|
|
591 | (1) |
|
|
591 | (1) |
|
9.5.3.2 Spectral (Isobaric) Interferences |
|
|
592 | (2) |
|
9.5.4 Instrumental Approaches to Eliminating Interferences |
|
|
594 | (1) |
|
9.5.4.1 High-Resolution ICP-MS (HR-ICP-MS) |
|
|
594 | (1) |
|
9.5.4.2 Collision and Reaction Cells |
|
|
594 | (1) |
|
9.5.4.3 MS/MS Interference Removal |
|
|
595 | (2) |
|
9.5.5 Limitations of Atomic MS |
|
|
597 | (1) |
|
9.5.5.1 Common Spurious Effects in Mass Spectrometry |
|
|
598 | (1) |
|
|
598 | (2) |
|
|
600 | (3) |
|
Chapter 10 Principles Of Chromatography |
|
|
603 | (30) |
|
10.1 Introduction to Chromatography |
|
|
603 | (1) |
|
10.2 What is the Chromatographic Process? |
|
|
604 | (3) |
|
10.3 Chromatography in More than One Dimension |
|
|
607 | (1) |
|
10.4 Visualization of the Chromatographic Process at the Molecular Level: Analogy to "People on a Moving Belt Slideway" |
|
|
608 | (5) |
|
10.5 The Central Role of Silicon-Oxygen Compounds In Chromatography |
|
|
613 | (3) |
|
10.6 Basic Equations Describing Chromatographic Separations |
|
|
616 | (3) |
|
10.7 How do Column Variables Affect Efficiency (Plate Height)? |
|
|
619 | (2) |
|
10.8 Practical Optimization of Chromatographic Separations |
|
|
621 | (1) |
|
10.9 Extra-Column Band Broadening Effects |
|
|
622 | (1) |
|
10.10 Qualitative Chromatography: Analyte Identification |
|
|
623 | (1) |
|
10.11 Quantitative Measurements in Chromatography |
|
|
624 | (3) |
|
10.11.1 Peak Area or Peak Height: What is Best for Quantitation? |
|
|
625 | (1) |
|
10.11.2 Calibration with an External Standard |
|
|
626 | (1) |
|
10.11.3 Calibration with an Internal Standard |
|
|
626 | (1) |
|
10.12 Examples of Chromatographic Calculations |
|
|
627 | (2) |
|
|
629 | (1) |
|
Questions Based on Example in Section 10.13, Tables 10.1 and 10.2 |
|
|
630 | (1) |
|
|
631 | (2) |
|
Chapter 11 Gas Chromatography |
|
|
633 | (50) |
|
11.1 Historical Development of GC: The First Chromatographic Instrumentation |
|
|
633 | (2) |
|
11.2 Advances in GC Leading to Present-Day Instrumentation |
|
|
635 | (2) |
|
11.3 GC Instrument Component Design (Injectors) |
|
|
637 | (5) |
|
|
637 | (1) |
|
|
638 | (1) |
|
11.3.3 Solid Phase Microextraction (SPME) |
|
|
639 | (1) |
|
|
640 | (1) |
|
11.3.5 Splitless Injections |
|
|
641 | (1) |
|
11.4 GC Instrument Component Design (The Column) |
|
|
642 | (6) |
|
11.4.1 Column Stationary Phase |
|
|
642 | (3) |
|
11.4.2 Selecting a Stationary Phase for an Application |
|
|
645 | (1) |
|
11.4.3 Effects of Mobile Phase Choice and Flow Parameters |
|
|
646 | (2) |
|
11.5 GC Instrument Operation (Column Dimensions and Elution Values) |
|
|
648 | (2) |
|
11.6 GC Instrument Operation (Column Temperature and Elution Values) |
|
|
650 | (4) |
|
11.7 GC Instrument Component Design (Detectors) |
|
|
654 | (11) |
|
11.7.1 Thermal Conductivity Detector (TCD) |
|
|
656 | (1) |
|
11.7.2 Flame Ionization Detector (FID) |
|
|
657 | (1) |
|
11.7.3 Electron Capture Detector (ECD) |
|
|
658 | (2) |
|
11.7.4 Electrolytic Conductivity Detector (ELCD) |
|
|
660 | (1) |
|
11.7.5 Sulfur--Phosphorus Flame Photometric Detector (SP-FPD) |
|
|
661 | (1) |
|
11.7.6 Sulfur Chemiluminescence Detector (SCD) |
|
|
661 | (1) |
|
11.7.7 Nitrogen-Phosphorus Detector (NPD) |
|
|
661 | (1) |
|
11.7.8 Photoionization Detector (PID) |
|
|
662 | (1) |
|
11.7.9 Helium Ionization Detector (HID) |
|
|
663 | (1) |
|
11.7.10 Atomic Emission Detector (AED) |
|
|
664 | (1) |
|
11.8 Hyphenated GC Techniques (GC-MS; GC-IR; GC-GC; 2D-GC) |
|
|
665 | (8) |
|
11.8.1 Gas Chromatography-Mass Spectrometry (GC-MS) |
|
|
665 | (3) |
|
11.8.2 Gas Chromatography-IR Spectrometry (GC-IR) |
|
|
668 | (1) |
|
11.8.3 Comprehensive 2D-Gas Chromatography (GcxGc or GC2) |
|
|
669 | (4) |
|
11.9 Retention Indices (a Generalization of Relative Rt Information) |
|
|
673 | (1) |
|
11.10 The Scope of GC Analyses |
|
|
674 | (5) |
|
11.10.1 Gc Behavior of Organic Compound Classes |
|
|
675 | (1) |
|
11.10.2 Derivatization of Difficult Analytes to Improve GC Elution Behavior |
|
|
675 | (1) |
|
11.10.3 Gas Analysis by GC |
|
|
676 | (3) |
|
11.10.4 Limitations of Gas Chromatography |
|
|
679 | (1) |
|
|
679 | (3) |
|
|
682 | (1) |
|
Chapter 12 Chromatography With Liquid Mobile Phases |
|
|
683 | (68) |
|
12.1 High-Performance Liquid Chromatography |
|
|
683 | (36) |
|
12.1.1 HPLC Column and Stationary Phases |
|
|
684 | (2) |
|
12.1.1.1 Support Particle Considerations |
|
|
686 | (3) |
|
12.1.1.2 Stationary Phase Considerations |
|
|
689 | (1) |
|
12.1.1.3 Chiral Phases for Separation of Enantiomers |
|
|
689 | (1) |
|
12.1.1.4 New HPLC Phase Combinations for Assays of Very Polar Biomolecules |
|
|
690 | (1) |
|
12.1.2 Effects on Separation of Composition of the Mobile Phase |
|
|
691 | (2) |
|
12.1.3 Design and Operation of an HPLC Instrument |
|
|
693 | (4) |
|
12.1.4 HPLC Detector Design and Operation |
|
|
697 | (1) |
|
12.1.4.1 Refractive Index Detector |
|
|
698 | (1) |
|
12.1.4.2 Aerosol Detectors: Evaporative Light Scattering Detector and Corona Charged Aerosol Detector |
|
|
698 | (3) |
|
12.1.4.3 UV/VIS and IR Absorption Detectors |
|
|
701 | (2) |
|
12.1.4.4 Fluorescence Detector |
|
|
703 | (1) |
|
12.1.4.5 Electrochemical Detectors |
|
|
704 | (5) |
|
12.1.5 Derivatization In HPLC |
|
|
709 | (2) |
|
12.1.6 Hyphenated Techniques in HPLC |
|
|
711 | (1) |
|
12.1.6.1 Interfacing HPLC to Mass Spectrometry |
|
|
712 | (4) |
|
12.1.7 Applications of HPLC |
|
|
716 | (3) |
|
12.2 Chromatography of Ions Dissolved in Liquids |
|
|
719 | (8) |
|
12.2.1 Ion Chromatography |
|
|
722 | (4) |
|
12.2.1.1 Single-Column IC |
|
|
726 | (1) |
|
12.2.1.2 Indirect Detection in IC |
|
|
726 | (1) |
|
12.3 Affinity Chromatography |
|
|
727 | (1) |
|
12.4 Size Exclusion Chromatography (SEC) |
|
|
728 | (2) |
|
12.5 Supercritical Fluid Chromatography |
|
|
730 | (4) |
|
12.5.1 Operating Conditions |
|
|
731 | (1) |
|
12.5.2 Effect of Pressure |
|
|
731 | (1) |
|
12.5.3 Stationary and Mobile Phases |
|
|
731 | (1) |
|
12.5.4 SFC Versus Other Column Methods |
|
|
732 | (1) |
|
|
733 | (1) |
|
12.5.6 Ultra Performance Convergence Chromatography (UPCC or UPC2) - A New Synthesis |
|
|
733 | (1) |
|
|
734 | (8) |
|
12.6.1 Capillary Zone Electrophoresis (CZE) |
|
|
734 | (5) |
|
12.6.2 Sample Injection In CZE |
|
|
739 | (2) |
|
|
741 | (1) |
|
12.6.4 Applications of CZE |
|
|
742 | (1) |
|
|
742 | (1) |
|
12.7 Planar Chromatography And Planar Electrophoresis |
|
|
742 | (5) |
|
12.7.1 Thin Layer Chromatography (TLC) |
|
|
742 | (3) |
|
12.7.2 Planar Electrophoresis on Slab Gels |
|
|
745 | (2) |
|
|
747 | (2) |
|
|
749 | (2) |
|
Chapter 13 Electroanalytical Chemistry |
|
|
751 | (74) |
|
13.1 Fundamentals of Electrochemistry |
|
|
751 | (2) |
|
13.2 Electrochemical Cells |
|
|
753 | (11) |
|
13.2.1 Line Notation for Cells and Half-Cells |
|
|
756 | (1) |
|
13.2.2 Standard Reduction Potentials: The Standard Hydrogen Electrode |
|
|
756 | (3) |
|
|
759 | (1) |
|
|
759 | (1) |
|
|
760 | (2) |
|
13.2.6 Reference Electrodes |
|
|
762 | (1) |
|
13.2.6.1 Saturated Calomel Electrode |
|
|
762 | (1) |
|
13.2.6.2 Silver/Silver Chloride Electrode |
|
|
763 | (1) |
|
13.2.7 Electrical Double Layer |
|
|
763 | (1) |
|
13.3 Electroanalytical Methods |
|
|
764 | (53) |
|
|
764 | (2) |
|
13.3.1.1 Indicator Electrodes |
|
|
766 | (7) |
|
13.3.1.2 Instrumentation for Measuring Potential |
|
|
773 | (2) |
|
13.3.1.3 Analytical Applications of Potentiometry |
|
|
775 | (11) |
|
|
786 | (2) |
|
13.3.2.1 Instrumentation for Electrogravimetry and Coulometry |
|
|
788 | (1) |
|
13.3.2.2 Applied Potential |
|
|
789 | (1) |
|
13.3.2.3 Electrogravimetry |
|
|
790 | (1) |
|
13.3.2.4 Analytical Determinations Using Faraday's Law |
|
|
791 | (1) |
|
13.3.2.5 Controlled Potential Coulometry |
|
|
792 | (1) |
|
13.3.2.6 Coulometric Titrations |
|
|
793 | (2) |
|
13.3.3 Conductometric Analysis |
|
|
795 | (2) |
|
13.3.3.1 Instrumentation for Conductivity Measurements |
|
|
797 | (1) |
|
13.3.3.2 Analytical Applications of Conductometric Measurements |
|
|
798 | (3) |
|
|
801 | (1) |
|
13.3.4.1 Classical or DC Polarography |
|
|
802 | (5) |
|
13.3.4.2 Half-Wave Potential |
|
|
807 | (1) |
|
13.3.4.3 Normal Pulse Polarography |
|
|
807 | (2) |
|
13.3.4.4 Differential Pulse Polarography |
|
|
809 | (3) |
|
|
812 | (1) |
|
13.3.5.1 Instrumentation for Voltammetry |
|
|
813 | (1) |
|
13.3.5.2 Cyclic Voltammetry |
|
|
813 | (1) |
|
13.3.5.3 Stripping Voltammetry |
|
|
814 | (3) |
|
13.4 Spectroelectrochemistry |
|
|
817 | (4) |
|
|
821 | (1) |
|
|
822 | (1) |
|
|
823 | (2) |
|
Chapter 14 Thermal Analysis |
|
|
825 | (50) |
|
|
827 | (13) |
|
14.1.1 TGA Instrumentation |
|
|
829 | (3) |
|
14.1.2 Analytical Applications of Thermogravimetry |
|
|
832 | (5) |
|
14.1.3 Derivative Thermogravimetry |
|
|
837 | (2) |
|
14.1.4 Sources of Error in Thermogravimetry |
|
|
839 | (1) |
|
14.2 Differential Thermal Analysis |
|
|
840 | (5) |
|
14.2.1 DTA Instrumentation |
|
|
841 | (2) |
|
14.2.2 Analytical Applications of DTA |
|
|
843 | (2) |
|
14.3 Differential Scanning Calorimetry |
|
|
845 | (9) |
|
14.3.1 DSC Instrumentation |
|
|
845 | (6) |
|
14.3.2 Applications of DSC |
|
|
851 | (2) |
|
|
853 | (1) |
|
|
854 | (1) |
|
14.4 Hyphenated Techniques |
|
|
854 | (4) |
|
14.4.1 Hyphenated Thermal Methods |
|
|
854 | (1) |
|
14.4.2 Evolved Gas Analysis |
|
|
855 | (3) |
|
14.5 Thermometric Titrimetry |
|
|
858 | (2) |
|
14.6 Direct Injection Enthalpimetry |
|
|
860 | (1) |
|
|
861 | (7) |
|
14.7.1 Micro-DSC Instrumentation |
|
|
862 | (1) |
|
14.7.2 Applications of Micro DSC |
|
|
863 | (3) |
|
14.7.3 Isothermal Titration Calorimetry |
|
|
866 | (2) |
|
14.7.4 Microliter Flow Calorimetry |
|
|
868 | (1) |
|
A Note About Reference Materials |
|
|
868 | (1) |
|
|
869 | (1) |
|
|
870 | (2) |
|
|
872 | (3) |
Index |
|
875 | |