Muutke küpsiste eelistusi

E-raamat: Instrumental Analytical Chemistry: An Introduction

(New York State Department of Health, Albany, USA), , (Louisiana State University, Baton Rouge, USA)
  • Formaat: 920 pages
  • Ilmumisaeg: 29-Jun-2021
  • Kirjastus: CRC Press
  • Keel: eng
  • ISBN-13: 9781315301143
  • Formaat - PDF+DRM
  • Hind: 119,59 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 920 pages
  • Ilmumisaeg: 29-Jun-2021
  • Kirjastus: CRC Press
  • Keel: eng
  • ISBN-13: 9781315301143

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Analytical chemistry today is almost entirely instrumental analytical chemistry and it is performed by many scientists and engineers who are not chemists. Analytical instrumentation is crucial to research in molecular biology, medicine, geology, food science, materials science, and many other fields. With the growing sophistication of laboratory equipment, there is a danger that analytical instruments can be regarded as "black boxes" by those using them. The well-known phrase "garbage in, garbage out" holds true for analytical instrumentation as well as computers. This book serves to provide users of analytical instrumentation with an understanding of their instruments.

This book is written to teach undergraduate students and those working in chemical fields outside analytical chemistry how contemporary analytical instrumentation works, as well as its uses and limitations. Mathematics is kept to a minimum. No background in calculus, physics, or physical chemistry is required. The major fields of modern instrumentation are covered, including applications of each type of instrumental technique.

Each chapter includes:





A discussion of the fundamental principles underlying each technique Detailed descriptions of the instrumentation An extensive and up-to-date bibliography End of chapter problems Suggested experiments appropriate to the technique where relevant

This text uniquely combines instrumental analysis with organic spectral interpretation (IR, NMR, and MS). It provides detailed coverage of sampling, sample handling, sample storage, and sample preparation. In addition, the authors have included many instrument manufacturers websites, which contain extensive resources.
Abbreviations and Acronyms Index xvii
Preface xxiii
Authors xxv
Acknowledgments xxvii
Chapter 1 Concepts Of Instrumental Analytical Chemistry
1(60)
1.1 Introduction: What is Instrumental Analytical Chemistry?
1(1)
1.2 Analytical Approach
2(13)
1.2.1 Defining the Problem
3(1)
1.2.1.1 Qualitative Analysis
4(2)
1.2.1.2 Quantitative Analysis
6(3)
1.2.2 Designing the Analytical Method
9(1)
1.2.3 Sampling
10(3)
1.2.3.1 Gas Samples
13(1)
1.2.3.2 Liquid Samples
13(1)
1.2.3.3 Solid Samples
14(1)
1.2.4 Storage of Samples
14(1)
1.3 Sample Preparation
15(14)
1.3.1 Acid Dissolution and Digestion
15(3)
1.3.2 Fusions
18(2)
1.3.3 Dry Ashing and Combustion
20(1)
1.3.4 Extraction
20(1)
1.3.4.1 Solvent Extraction
21(3)
1.3.4.2 Solid Phase Extraction (SPE)
24(1)
1.3.4.3 QuEChERS
25(1)
1.3.4.4 Solid Phase Microextraction (SPME)
26(3)
1.4 Basic Statistics and Data Handling
29(13)
1.4.1 Accuracy and Precision
29(1)
1.4.2 Types of Errors
30(1)
1.4.2.1 Determinate Error
30(3)
1.4.2.2 Indeterminate Error
33(1)
1.4.3 Definitions for Statistics
34(1)
1.4.4 Quantifying Random Error
35(4)
1.4.4.1 Confidence Limits
39(1)
1.4.4.2 Variance
40(1)
1.4.5 Rejection of Results
41(1)
1.5 Performing the Measurement
42(3)
1.5.1 Signals and Noise
42(3)
1.6 Methods of Calibration
45(9)
1.6.1 Plotting Calibration Curves
45(2)
1.6.2 Calibration with External Standards
47(2)
1.6.3 Method of Standard Additions
49(2)
1.6.4 Internal Standard Calibration
51(3)
1.7 Assessing the Data
54(2)
1.7.1 Limit of Detection
55(1)
1.7.2 Limit of Quantitation
56(1)
Problems
56(2)
Bibliography
58(3)
Chapter 2 Introduction To Spectroscopy
61(40)
2.1 The Interaction Between Electromagnetic Radiation and Matter
61(6)
2.1.1 What is Electromagnetic Radiation?
61(2)
2.1.2 How Does Electromagnetic Radiation Interact with Matter?
63(4)
2.2 Atoms and Atomic Spectroscopy
67(2)
2.3 Molecules and Molecular Spectroscopy
69(2)
2.3.1 Rotational Transitions in Molecules
69(1)
2.3.2 Vibrational Transitions in Molecules
70(1)
2.3.3 Electronic Transitions in Molecules
70(1)
2.4 Absorption Laws
71(7)
2.4.1 Deviations from Beer's Law
74(1)
2.4.2 Errors Associated with Beer's Law Relationships
75(3)
2.5 Optical Systems Used in Spectroscopy
78(17)
2.5.1 Radiation Sources
79(1)
2.5.2 Wavelength Selection Devices
79(1)
2.5.2.1 Filters
79(1)
2.5.2.2 Monochromator
80(3)
2.5.2.3 Resolution Required to Separate Two Lines of Different Wavelength
83(5)
2.5.3 Optical Slits
88(1)
2.5.4 Detectors
89(1)
2.5.5 Single-Beam and Double-Beam Optics
89(3)
2.5.6 Dispersive Optical Layouts
92(1)
2.5.7 Fourier Transform Spectrometers
93(2)
2.6 Spectroscopic Technique and Instrument Nomenclature
95(1)
Suggested Experiments
95(1)
Problems
96(3)
Bibliography
99(2)
Chapter 3 Visible And Ultraviolet Molecular Spectroscopy
101(62)
3.1 Introduction
101(11)
3.1.1 Electronic Excitation in Molecules
104(3)
3.1.2 Absorption by Molecules
107(1)
3.1.3 Molar Absorptivity
108(1)
3.1.4 The Shape of UV Absorption Curves
109(2)
3.1.5 Solvents for UV/VIS Spectroscopy
111(1)
3.2 Instrumentation
112(22)
3.2.1 Optical System
112(1)
3.2.2 Radiation Sources
113(2)
3.2.3 Monochromators
115(1)
3.2.4 Detectors
115(1)
3.2.4.1 Barrier Layer Cell
115(2)
3.2.4.2 Photomultiplier Tube
117(1)
3.2.4.3 Semiconductor Detectors: Diodes and Diode Array Systems
118(2)
3.2.4.4 Diodes
120(1)
3.2.4.5 Diode Arrays
121(1)
3.2.5 Sample Holders
122(1)
3.2.5.1 Liquid and Gas Cells
122(2)
3.2.5.2 Matched Cells
124(1)
3.2.5.3 Flow-Through Samplers
125(1)
3.2.5.4 Solid Sample Holders
126(1)
3.2.5.5 Fiber Optic Probes
126(1)
3.2.6 Microvolume, Nanovolume and Hand-Held UV/VIS Spectrometers
127(7)
3.3 Analytical Applications
134(10)
3.3.1 Qualitative Structural Analysis
134(1)
3.3.2 Quantitative Analysis
134(5)
3.3.3 Multicomponent Determinations
139(1)
3.3.4 Other Applications
140(1)
3.3.4.1 Reaction Kinetics
140(1)
3.3.4.2 Spectrophotometric Titrations
141(1)
3.3.4.3 Spectroelectrochemistry
142(1)
3.3.4.4 Analysis of Solids
142(1)
3.3.5 Measurement of Color
142(2)
3.4 Nephelometry and Turbidimetry
144(2)
3.5 Molecular Emission Spectrometry
146(4)
3.5.1 Fluorescence and Phosphorescence
146(2)
3.5.2 Relationship Between Fluorescence Intensity and Concentration
148(2)
3.6 Instrumentation for Luminescence Measurements
150(3)
3.6.1 Wavelength Selection Devices
150(1)
3.6.2 Radiation Sources
151(1)
3.6.3 Detectors
152(1)
3.6.4 Sample Cells
153(1)
3.7 Analytical Applications of Luminescence
153(3)
3.7.1 Advantages of Fluorescence and Phosphorescence
155(1)
3.7.2 Disadvantages of Fluorescence and Phosphorescence
155(1)
Suggested Experiments
156(1)
Problems
157(4)
Bibliography
161(2)
Chapter 4 Infrared, Near-Infrared, And Raman Spectroscopy
163(82)
4.1 Absorption of IR Radiation by Molecules
164(5)
4.1.1 Dipole Moments in Molecules
164(2)
4.1.2 Types of Vibrations in Molecules
166(2)
4.1.3 Vibrational Motion
168(1)
4.2 IR Instrumentation
169(15)
4.2.1 Radiation Sources
172(1)
4.2.1.1 Mid-IR Sources
173(1)
4.2.1.2 NIR Sources
174(1)
4.2.1.3 Far-IR Sources
175(1)
4.2.1.4 IR Laser Sources
175(1)
4.2.2 Monochromators and Interferometers
175(1)
4.2.2.1 FT Spectrometers
176(3)
4.2.2.2 Interferometer Components
179(2)
4.2.3 Detectors
181(1)
4.2.3.1 Bolometer
182(1)
4.2.3.2 Pyroelectric Detectors
182(1)
4.2.3.3 Photon Detectors
182(1)
4.2.4 Detector Response Time
183(1)
4.3 Sampling Techniques
184(12)
4.3.1 Techniques for Transmission (Absorption) Measurements
184(1)
4.3.1.1 Solid Samples
184(3)
4.3.1.2 Liquid Samples
187(2)
4.3.1.3 Gas Samples
189(1)
4.3.2 Background Correction in Transmission Measurements
190(1)
4.3.2.1 Solvent Absorption
190(1)
4.3.2.2 Air Absorption
191(1)
4.3.3 Techniques for Reflectance and Emission Measurements
191(1)
4.3.3.1 Attenuated Total Reflectance (ATR)
191(2)
4.3.3.2 Specular Reflectance
193(1)
4.3.3.3 Diffuse Reflectance
194(1)
4.3.3.4 IR Emission
195(1)
4.4 FTIR Microscopy
196(4)
4.5 Nondispersive IR Systems
200(1)
4.6 Analytical Applications of IR Spectroscopy
201(8)
4.6.1 Qualitative Analyses and Structural Determination by Mid-IR Absorption Spectroscopy
202(4)
4.6.2 Quantitative Analyses by IR Spectrometry
206(3)
4.7 Near-IR Spectroscopy
209(8)
4.7.1 Instrumentation
210(1)
4.7.2 NIR Vibrational Bands
210(2)
4.7.3 NIR Calibration: Chemometrics
212(1)
4.7.4 Sampling Techniques for NIR Spectroscopy
213(1)
4.7.4.1 Liquids and Solutions
214(1)
4.7.4.2 Solids
214(1)
4.7.4.3 Gases
214(1)
4.7.5 Applications of NIR Spectroscopy
214(3)
4.8 Raman Spectroscopy
217(16)
4.8.1 Principles of Raman Scattering
217(2)
4.8.2 Raman Instrumentation
219(1)
4.8.2.1 Light Sources
219(2)
4.8.2.2 Dispersive Spectrometers Systems
221(1)
4.8.2.3 FT-Raman Spectrometers
222(1)
4.8.2.4 Fiber Optic-Based Modular and Handheld Systems
223(1)
4.8.2.5 Samples and Sample Holders for Raman Spectroscopy
224(2)
4.8.3 Applications of Raman Spectroscopy
226(4)
4.8.4 The Resonance Raman Effect
230(1)
4.8.5 Surface-Enhanced Raman Spectroscopy (SERS)
231(1)
4.8.6 Raman Microscopy
232(1)
4.9 Chemical Imaging Using NIR, IR, and Raman Spectroscopy
233(7)
Suggested Experiments
240(1)
Problems
241(1)
Bibliography
242(3)
Chapter 5 Magnetic Resonance Spectroscopy
245(58)
5.1 Nuclear Magnetic Resonance Spectroscopy: Introduction
245(10)
5.1.1 Properties of Nuclei
246(1)
5.1.2 Quantization of 1H Nuclei in a Magnetic Field
247(3)
5.1.2.1 Saturation and Magnetic Field Strength
250(2)
5.1.3 Width of Absorption Lines
252(1)
5.1.3.1 The Homogeneous Field
252(1)
5.1.3.2 Relaxation Time
253(1)
5.1.3.3 The Chemical Shift
254(1)
5.1.3.4 Magic Angle Spinning
254(1)
5.1.3.5 Other Sources of Line Broadening
254(1)
5.2 The FTNMR Experiment
255(3)
5.3 Chemical Shifts
258(5)
5.4 Spin-Spin Coupling
263(6)
5.5 Instrumentation
269(6)
5.5.1 Sample Holder
269(3)
5.5.2 Sample Probe
272(1)
5.5.3 Magnet
272(2)
5.5.4 RF Generation and Detection
274(1)
5.5.5 Signal Integrator and Computer
274(1)
5.6 Analytical Applications of NMR
275(16)
5.6.1 Samples and Sample Preparation for NMR
275(1)
5.6.2 Qualitative Analyses: Molecular Structure Determination
276(1)
5.6.2.1 Relationship Between the Area of a Peak and Molecular Structure
276(1)
5.6.2.2 Chemical Exchange
277(1)
5.6.2.3 Double Resonance Experiments
277(3)
5.6.3 13C NMR
280(2)
5.6.3.1 Heteronuclear Decoupling
282(1)
5.6.3.2 The Nuclear Overhauser Effect
282(1)
5.6.3.3 13C NMR Spectra of Solids
283(1)
5.6.4 2D NMR
284(3)
5.6.5 Qualitative Analyses: Other Applications
287(1)
5.6.6 Quantitative Analyses
288(3)
5.7 Hyphenated NMR Techniques
291(1)
5.8 NMR Imaging and MRI
292(2)
5.9 Low-Field, Portable, and Miniature NMR Instruments
294(3)
5.10 Limitations of NMR
297(1)
Suggested Experiments
298(1)
Problems
298(2)
Bibliography
300(3)
Chapter 6 Atomic Absorption Spectrometry
303(50)
6.1 Absorption of Radiant Energy by Atoms
303(3)
6.1.1 Spectral Linewidth
305(1)
6.1.2 Degree of Radiant Energy Absorption
306(1)
6.2 Instrumentation
306(13)
6.2.1 Radiation Sources
307(1)
6.2.1.1 Hollow Cathode Lamp (HCL)
307(2)
6.2.1.2 Electrodeless Discharge Lamp (EDL)
309(1)
6.2.2 Atomizers
310(1)
6.2.2.1 Flame Atomizers
310(2)
6.2.2.2 Electrothermal Atomizers
312(2)
6.2.2.3 Other Atomizers
314(1)
6.2.3 Spectrometer Optics
315(1)
6.2.3.1 Monochromator
315(1)
6.2.3.2 Optics and Spectrometer Configuration
316(1)
6.2.4 Detectors
317(1)
6.2.5 Modulation
317(1)
6.2.6 Commercial AAS Systems
318(1)
6.2.6.1 High-Resolution Continuum Source AAS
319(1)
6.3 The Atomization Process
319(7)
6.3.1 Flame Atomization
319(5)
6.3.2 Graphite Furnace Atomization
324(2)
6.4 Interferences in AAS
326(12)
6.4.1 Non-Spectral Interferences
326(1)
6.4.1.1 Chemical Interference
326(1)
6.4.1.2 Matrix Interference
327(1)
6.4.1.3 Ionization Interference
328(1)
6.4.1.4 Non-Spectral Interferences in GFAAS
328(2)
6.4.1.5 Chemical Modification
330(2)
6.4.2 Spectral Interferences
332(1)
6.4.2.1 Atomic Spectral Interference
332(1)
6.4.2.2 Background Absorption and its Correction
332(1)
6.4.2.3 Continuum Source Background Correction
333(2)
6.4.2.4 Zeeman Background Correction
335(1)
6.4.2.5 Smith-Hieftje Background Correction
336(1)
6.4.2.6 Spectral Interferences In GFAAS
337(1)
6.5 Analytical Applications of AAS
338(9)
6.5.1 Qualitative Analysis
338(1)
6.5.2 Quantitative Analysis
339(1)
6.5.2.1 Quantitative Analytical Range
339(1)
6.5.2.2 Calibration
339(2)
6.5.3 Analysis of Samples
341(1)
6.5.3.1 Liquid Samples
341(1)
6.5.3.2 Solid Samples
342(2)
6.5.3.3 Gas Samples
344(1)
6.5.3.4 Cold Vapor Mercury Technique
345(1)
6.5.3.5 Hydride Generation Technique
346(1)
6.5.3.6 Flow Injection Analysis
346(1)
6.5.3.7 Flame Microsampling
347(1)
Suggested Experiments
347(2)
Problems
349(1)
Bibliography
350(3)
Chapter 7 Atomic Emission Spectroscopy
353(74)
7.1 Flame Atomic Emission Spectroscopy
353(9)
7.1.1 Instrumentation for Flame OES
354(1)
7.1.1.1 Burner Assembly
355(1)
7.1.1.2 Wavelength Selection Devices
355(1)
7.1.1.3 Detectors
356(1)
7.1.1.4 Flame Excitation Source
356(2)
7.1.2 Interferences
358(1)
7.1.2.1 Chemical Interference
358(1)
7.1.2.2 Excitation and Ionization Interferences
358(1)
7.1.2.3 Spectral Interferences
359(1)
7.1.3 Analytical Applications of Flame OES
360(1)
7.1.3.1 Qualitative Analysis
360(1)
7.1.3.2 Quantitative Analysis
360(2)
7.2 Atomic Optical Emission Spectroscopy
362(20)
7.2.1 Instrumentation for Emission Spectroscopy
363(1)
7.2.1.1 Electrical Excitation Sources
364(4)
7.2.1.2 Sample Holders
368(1)
7.2.1.3 Spectrometers
369(5)
7.2.1.4 Detectors
374(2)
7.2.2 Interferences in Arc and Spark Emission Spectroscopy
376(1)
7.2.2.1 Matrix Effects and Sample Preparation
376(1)
7.2.2.2 Spectral Interference
377(1)
7.2.2.3 Internal Standard Calibration
377(1)
7.2.3 Applications of Arc and Spark Emission Spectroscopy
378(1)
7.2.3.1 Qualitative Analysis
378(1)
7.2.3.2 Raies Ultimes
378(3)
7.2.3.3 Quantitative Analysis
381(1)
7.3 Plasma Emission Spectroscopy
382(22)
7.3.1 Instrumentation for Plasma Emission Spectrometry
382(1)
7.3.1.1 Excitation Sources
382(4)
7.3.1.2 Spectrometer Systems for Plasma Spectroscopy
386(3)
7.3.1.3 Sample Introduction Systems
389(6)
7.3.2 Calibration and Interferences in Plasma Emission Spectrometry
395(2)
7.3.2.1 Chemical and Ionization Interference
397(1)
7.3.2.2 Spectral Interference and Correction
398(3)
7.3.3 Applications of Atomic Emission Spectroscopy
401(2)
7.3.4 Chemical Speciation with Hyphenated Instruments
403(1)
7.4 Glow Discharge Emission Spectrometry
404(2)
7.4.1 DC And RF GD Sources
404(1)
7.4.2 Applications of GD Atomic Emission Spectrometry
405(1)
7.4.2.1 Bulk Analysis
405(1)
7.4.2.2 Depth Profile Analysis
406(1)
7.5 Atomic Fluorescence Spectroscopy
406(6)
7.5.1 Instrumentation for AFS
409(1)
7.5.2 Interferences in AFS
410(1)
7.5.2.1 Chemical Interference
410(1)
7.5.2.2 Spectral Interference
411(1)
7.5.3 Applications of AFS
411(1)
7.5.3.1 Mercury Determination and Speciation by AFS
411(1)
7.5.3.2 Hydride Generation and Speciation by AFS
412(1)
7.6 Laser-Induced Breakdown Spectroscopy (LIBS)
412(7)
7.6.1 Principle of Operation
412(1)
7.6.2 Instrumentation
413(1)
7.6.3 Applications of LIBS
414(1)
7.6.3.1 Qualitative Analysis
415(1)
7.6.3.2 Quantitative Analysis
416(1)
7.6.3.3 Remote Analysis
417(2)
7.7 Atomic Emission Literature and Resources
419(1)
Suggested Experiments
419(2)
Problems
421(2)
Bibliography
423(4)
Chapter 8 X-Ray Spectroscopy
427(92)
8.1 Origin of X-ray Spectra
427(12)
8.1.1 Energy Levels in Atoms
427(6)
8.1.2 Moseley's Law
433(1)
8.1.3 X-ray Methods
434(1)
8.1.3.1 X-ray Absorption Process
434(3)
8.1.3.2 X-ray Fluorescence Process
437(1)
8.1.3.3 X-ray Diffraction Process
438(1)
8.2 X-ray Fluorescence
439(51)
8.2.1 X-ray Source
439(1)
8.2.1.1 X-ray Tube
440(4)
8.2.1.2 Secondary XRF Sources
444(1)
8.2.1.3 Radioisotope Sources
444(1)
8.2.2 Instrumentation for Energy Dispersive X-ray Spectrometry
445(1)
8.2.2.1 Excitation Source
446(1)
8.2.2.2 Primary Beam Modifiers
447(3)
8.2.2.3 Sample Holders
450(4)
8.2.2.4 EDXRF Detectors
454(3)
8.2.2.5 Multichannel Pulse Height Analyzer
457(1)
8.2.2.6 Detector Artifact Escape Peaks and Sum Peaks
458(2)
8.2.3 Instrumentation for Wavelength Dispersive X-ray Spectrometry
460(1)
8.2.3.1 Collimators
461(1)
8.2.3.2 Analyzing Crystals
462(3)
8.2.3.3 Detectors
465(5)
8.2.3.4 Electronic Pulse Processing Units
470(1)
8.2.3.5 Sample Changers
471(1)
8.2.4 Simultaneous WDXRF Spectrometers
471(2)
8.2.5 Micro-XRF Instrumentation
473(1)
8.2.5.1 Micro X-ray Beam Optics
473(2)
8.2.5.2 Micro-XRF System Components
475(1)
8.2.6 Total Reflection XRF
476(1)
8.2.7 Comparison Between EDXRF and WDXRF
476(1)
8.2.8 XRF Applications
476(1)
8.2.8.1 The Analyzed Layer
477(2)
8.2.8.2 Sample Preparation Considerations for XRF
479(3)
8.2.8.3 Qualitative Analysis by XRF
482(5)
8.2.8.4 Quantitative Analysis by XRF
487(3)
8.3 X-ray Absorption
490(6)
8.4 X-ray Diffraction
496(13)
8.4.1 Single Crystal X-ray Diffractometry
499(1)
8.4.2 Crystal Growing
499(2)
8.4.3 Crystal Structure Determination
501(2)
8.4.4 Powder X-ray Diffractometry
503(1)
8.4.5 Hybrid XRD/XRF Systems
504(2)
8.4.6 Applications of XRD
506(3)
8.5 X-ray Emission
509(2)
Suggested Experiments
511(1)
Problems
512(5)
Bibliography
517(2)
Chapter 9 Mass Spectrometry
519(84)
9.1 Principles of MS
520(7)
9.1.1 Resolving Power and Resolution of a Mass Spectrometer
525(2)
9.2 Instrumentation
527(1)
A Brief Digression on Units of Measure---Vacuum Systems
527(36)
9.2.1 Sample Input Systems
528(1)
9.2.1.1 Gas Expansion
528(1)
9.2.1.2 Direct Insertion and Direct Exposure Probes
528(1)
9.2.1.3 Chromatography and Electrophoresis Systems
528(1)
9.2.2 Ionization Sources
529(1)
9.2.2.1 Electron Ionization (EI)
529(1)
9.2.2.2 Chemical Ionization (CI)
530(1)
9.2.2.3 Atmospheric Pressure Ionization (API) Sources
531(4)
9.2.2.4 Desorption Ionization
535(5)
9.2.2.5 Ionization Sources for Inorganic MS
540(1)
9.2.3 Mass Analyzers
541(1)
9.2.3.1 Magnetic and Electric Sector Instruments
542(4)
9.2.3.2 Time of Flight (TOF) Analyzer
546(5)
9.2.3.3 Quadrupole Mass Analyzer
551(3)
9.2.3.4 MS/MS and MS" Instruments
554(2)
9.2.3.5 Quadrupole Ion Trap
556(1)
9.2.3.6 Fourier Transform Ion-Cyclotron Resonance (FTICR)
557(1)
9.2.3.7 The Orbitrap™ TMMS
558(1)
9.2.4 Detectors
559(1)
9.2.4.1 Electron Multiplier
560(2)
9.2.4.2 Faraday Cup
562(1)
9.2.4.3 Array Detectors
562(1)
9.3 Ion Mobility Spectrometry
563(3)
9.3.1 Handheld DMS Juno® Chemical Trace Vapor Point Detector
564(1)
9.3.2 The Excellims HPIMS-LC System
564(1)
9.3.3 Photonis Ion Mobility Spectrometer Engine
565(1)
9.3.4 Synapt G2-S Multistage MS System Incorporating the Triwave Ion Mobility Stage
566(1)
9.4 Applications of Molecular MS
566(14)
9.4.1 High-Resolution Mass Spectrometry
570(2)
9.4.1.1 Achieving Higher Mass Accuracy (but not Resolution) from Low Resolution MS Instruments
572(1)
9.4.1.2 Improving the Quantitation Accuracy of Isotope Ratios from Low Resolution MS Instrument Data Files
572(1)
9.4.2 Quantitative Analysis of Compounds and Mixtures
573(3)
9.4.3 Protein-Sequencing Analysis (Proteomics)
576(1)
9.4.4 Gas Analysis
577(1)
9.4.5 Environmental Applications
578(1)
9.4.6 Other Applications of Molecular MS
578(2)
9.4.7 Limitations of Molecular MS
580(1)
9.5 Atomic MS
580(18)
9.5.1 Inductively Coupled Plasma Mass Spectrometry (ICP-MS)
580(3)
9.5.2 Applications of Atomic MS
583(3)
9.5.2.1 Geological and Materials Characterization Applications
586(1)
9.5.2.2 Speciation by Coupled Chromatography-ICP-MS
587(1)
9.5.2.3 Applications in Food Chemistry, Environmental Chemistry, Biochemistry, Clinical Chemistry, and Medicine
588(2)
9.5.2.4 Coupled Elemental Analysis-MS
590(1)
9.5.3 Interferences in Atomic MS
591(1)
9.5.3.1 Matrix Effects
591(1)
9.5.3.2 Spectral (Isobaric) Interferences
592(2)
9.5.4 Instrumental Approaches to Eliminating Interferences
594(1)
9.5.4.1 High-Resolution ICP-MS (HR-ICP-MS)
594(1)
9.5.4.2 Collision and Reaction Cells
594(1)
9.5.4.3 MS/MS Interference Removal
595(2)
9.5.5 Limitations of Atomic MS
597(1)
9.5.5.1 Common Spurious Effects in Mass Spectrometry
598(1)
Problems
598(2)
Bibliography
600(3)
Chapter 10 Principles Of Chromatography
603(30)
10.1 Introduction to Chromatography
603(1)
10.2 What is the Chromatographic Process?
604(3)
10.3 Chromatography in More than One Dimension
607(1)
10.4 Visualization of the Chromatographic Process at the Molecular Level: Analogy to "People on a Moving Belt Slideway"
608(5)
10.5 The Central Role of Silicon-Oxygen Compounds In Chromatography
613(3)
10.6 Basic Equations Describing Chromatographic Separations
616(3)
10.7 How do Column Variables Affect Efficiency (Plate Height)?
619(2)
10.8 Practical Optimization of Chromatographic Separations
621(1)
10.9 Extra-Column Band Broadening Effects
622(1)
10.10 Qualitative Chromatography: Analyte Identification
623(1)
10.11 Quantitative Measurements in Chromatography
624(3)
10.11.1 Peak Area or Peak Height: What is Best for Quantitation?
625(1)
10.11.2 Calibration with an External Standard
626(1)
10.11.3 Calibration with an Internal Standard
626(1)
10.12 Examples of Chromatographic Calculations
627(2)
Problems
629(1)
Questions Based on Example in Section 10.13, Tables 10.1 and 10.2
630(1)
Bibliography
631(2)
Chapter 11 Gas Chromatography
633(50)
11.1 Historical Development of GC: The First Chromatographic Instrumentation
633(2)
11.2 Advances in GC Leading to Present-Day Instrumentation
635(2)
11.3 GC Instrument Component Design (Injectors)
637(5)
11.3.1 Syringes
637(1)
11.3.2 Autosamplers
638(1)
11.3.3 Solid Phase Microextraction (SPME)
639(1)
11.3.4 Split Injections
640(1)
11.3.5 Splitless Injections
641(1)
11.4 GC Instrument Component Design (The Column)
642(6)
11.4.1 Column Stationary Phase
642(3)
11.4.2 Selecting a Stationary Phase for an Application
645(1)
11.4.3 Effects of Mobile Phase Choice and Flow Parameters
646(2)
11.5 GC Instrument Operation (Column Dimensions and Elution Values)
648(2)
11.6 GC Instrument Operation (Column Temperature and Elution Values)
650(4)
11.7 GC Instrument Component Design (Detectors)
654(11)
11.7.1 Thermal Conductivity Detector (TCD)
656(1)
11.7.2 Flame Ionization Detector (FID)
657(1)
11.7.3 Electron Capture Detector (ECD)
658(2)
11.7.4 Electrolytic Conductivity Detector (ELCD)
660(1)
11.7.5 Sulfur--Phosphorus Flame Photometric Detector (SP-FPD)
661(1)
11.7.6 Sulfur Chemiluminescence Detector (SCD)
661(1)
11.7.7 Nitrogen-Phosphorus Detector (NPD)
661(1)
11.7.8 Photoionization Detector (PID)
662(1)
11.7.9 Helium Ionization Detector (HID)
663(1)
11.7.10 Atomic Emission Detector (AED)
664(1)
11.8 Hyphenated GC Techniques (GC-MS; GC-IR; GC-GC; 2D-GC)
665(8)
11.8.1 Gas Chromatography-Mass Spectrometry (GC-MS)
665(3)
11.8.2 Gas Chromatography-IR Spectrometry (GC-IR)
668(1)
11.8.3 Comprehensive 2D-Gas Chromatography (GcxGc or GC2)
669(4)
11.9 Retention Indices (a Generalization of Relative Rt Information)
673(1)
11.10 The Scope of GC Analyses
674(5)
11.10.1 Gc Behavior of Organic Compound Classes
675(1)
11.10.2 Derivatization of Difficult Analytes to Improve GC Elution Behavior
675(1)
11.10.3 Gas Analysis by GC
676(3)
11.10.4 Limitations of Gas Chromatography
679(1)
Problems
679(3)
Bibliography
682(1)
Chapter 12 Chromatography With Liquid Mobile Phases
683(68)
12.1 High-Performance Liquid Chromatography
683(36)
12.1.1 HPLC Column and Stationary Phases
684(2)
12.1.1.1 Support Particle Considerations
686(3)
12.1.1.2 Stationary Phase Considerations
689(1)
12.1.1.3 Chiral Phases for Separation of Enantiomers
689(1)
12.1.1.4 New HPLC Phase Combinations for Assays of Very Polar Biomolecules
690(1)
12.1.2 Effects on Separation of Composition of the Mobile Phase
691(2)
12.1.3 Design and Operation of an HPLC Instrument
693(4)
12.1.4 HPLC Detector Design and Operation
697(1)
12.1.4.1 Refractive Index Detector
698(1)
12.1.4.2 Aerosol Detectors: Evaporative Light Scattering Detector and Corona Charged Aerosol Detector
698(3)
12.1.4.3 UV/VIS and IR Absorption Detectors
701(2)
12.1.4.4 Fluorescence Detector
703(1)
12.1.4.5 Electrochemical Detectors
704(5)
12.1.5 Derivatization In HPLC
709(2)
12.1.6 Hyphenated Techniques in HPLC
711(1)
12.1.6.1 Interfacing HPLC to Mass Spectrometry
712(4)
12.1.7 Applications of HPLC
716(3)
12.2 Chromatography of Ions Dissolved in Liquids
719(8)
12.2.1 Ion Chromatography
722(4)
12.2.1.1 Single-Column IC
726(1)
12.2.1.2 Indirect Detection in IC
726(1)
12.3 Affinity Chromatography
727(1)
12.4 Size Exclusion Chromatography (SEC)
728(2)
12.5 Supercritical Fluid Chromatography
730(4)
12.5.1 Operating Conditions
731(1)
12.5.2 Effect of Pressure
731(1)
12.5.3 Stationary and Mobile Phases
731(1)
12.5.4 SFC Versus Other Column Methods
732(1)
12.5.5 Applications
733(1)
12.5.6 Ultra Performance Convergence Chromatography (UPCC or UPC2) - A New Synthesis
733(1)
12.6 Electrophoresis
734(8)
12.6.1 Capillary Zone Electrophoresis (CZE)
734(5)
12.6.2 Sample Injection In CZE
739(2)
12.6.3 Detection In CZE
741(1)
12.6.4 Applications of CZE
742(1)
12.6.5 Modes of CE
742(1)
12.7 Planar Chromatography And Planar Electrophoresis
742(5)
12.7.1 Thin Layer Chromatography (TLC)
742(3)
12.7.2 Planar Electrophoresis on Slab Gels
745(2)
Problems and Exercises
747(2)
Bibliography
749(2)
Chapter 13 Electroanalytical Chemistry
751(74)
13.1 Fundamentals of Electrochemistry
751(2)
13.2 Electrochemical Cells
753(11)
13.2.1 Line Notation for Cells and Half-Cells
756(1)
13.2.2 Standard Reduction Potentials: The Standard Hydrogen Electrode
756(3)
13.2.3 Sign Conventions
759(1)
13.2.4 Nernst Equation
759(1)
13.2.5 Activity Series
760(2)
13.2.6 Reference Electrodes
762(1)
13.2.6.1 Saturated Calomel Electrode
762(1)
13.2.6.2 Silver/Silver Chloride Electrode
763(1)
13.2.7 Electrical Double Layer
763(1)
13.3 Electroanalytical Methods
764(53)
13.3.1 Potentiometry
764(2)
13.3.1.1 Indicator Electrodes
766(7)
13.3.1.2 Instrumentation for Measuring Potential
773(2)
13.3.1.3 Analytical Applications of Potentiometry
775(11)
13.3.2 Coulometry
786(2)
13.3.2.1 Instrumentation for Electrogravimetry and Coulometry
788(1)
13.3.2.2 Applied Potential
789(1)
13.3.2.3 Electrogravimetry
790(1)
13.3.2.4 Analytical Determinations Using Faraday's Law
791(1)
13.3.2.5 Controlled Potential Coulometry
792(1)
13.3.2.6 Coulometric Titrations
793(2)
13.3.3 Conductometric Analysis
795(2)
13.3.3.1 Instrumentation for Conductivity Measurements
797(1)
13.3.3.2 Analytical Applications of Conductometric Measurements
798(3)
13.3.4 Polarography
801(1)
13.3.4.1 Classical or DC Polarography
802(5)
13.3.4.2 Half-Wave Potential
807(1)
13.3.4.3 Normal Pulse Polarography
807(2)
13.3.4.4 Differential Pulse Polarography
809(3)
13.3.5 Voltammetry
812(1)
13.3.5.1 Instrumentation for Voltammetry
813(1)
13.3.5.2 Cyclic Voltammetry
813(1)
13.3.5.3 Stripping Voltammetry
814(3)
13.4 Spectroelectrochemistry
817(4)
Suggested Experiments
821(1)
Problems
822(1)
Bibliography
823(2)
Chapter 14 Thermal Analysis
825(50)
14.1 Thermogravimetry
827(13)
14.1.1 TGA Instrumentation
829(3)
14.1.2 Analytical Applications of Thermogravimetry
832(5)
14.1.3 Derivative Thermogravimetry
837(2)
14.1.4 Sources of Error in Thermogravimetry
839(1)
14.2 Differential Thermal Analysis
840(5)
14.2.1 DTA Instrumentation
841(2)
14.2.2 Analytical Applications of DTA
843(2)
14.3 Differential Scanning Calorimetry
845(9)
14.3.1 DSC Instrumentation
845(6)
14.3.2 Applications of DSC
851(2)
14.3.2.1 Pressure DSC
853(1)
14.3.2.2 Modulated DSC
854(1)
14.4 Hyphenated Techniques
854(4)
14.4.1 Hyphenated Thermal Methods
854(1)
14.4.2 Evolved Gas Analysis
855(3)
14.5 Thermometric Titrimetry
858(2)
14.6 Direct Injection Enthalpimetry
860(1)
14.7 Microcalorimetry
861(7)
14.7.1 Micro-DSC Instrumentation
862(1)
14.7.2 Applications of Micro DSC
863(3)
14.7.3 Isothermal Titration Calorimetry
866(2)
14.7.4 Microliter Flow Calorimetry
868(1)
A Note About Reference Materials
868(1)
Suggested Experiment
869(1)
Problems
870(2)
Bibliography
872(3)
Index 875
James W. Robinson earned his BS (Hons), PhD, and DSc from the University of Birmingham, England. Robinson began his career with the British Civil Service as a senior scientific officer before immigrating to the United States in 1955, completing a one-year term as a research associate at LSU. From 1956 to 1964, he worked in research labs at both Esso Corp. and Ethyl Corp., and in 1964 joined the LSU Department of Chemistry as an associate professor. He became professor in 1966 and retired as professor emeritus in 1993. Robinsons pioneering research in analytical chemistry and atomic spectroscopy led to the first comprehensive book, Atomic Absorption Spectroscopy, the text Undergraduate Instrumental Analysis (now in its 7th edition). He published more than 200 peer-reviewed manuscripts and mentored 45 graduate students, many of whom have enjoyed notable careers. He was executive editor of Spectroscopy Letters, the Journal of Environmental Science and Health, the Handbook of Spectroscopy and the Practical Handbook of Spectroscopy. He was recognized as a Fellow of the Royal Chemical Society, selected for the American Institute of Chemistrys Honor Scroll, a Guggenheim Fellowship, and received the Gold Medal Award of the New York Section of the Society of Applied Spectroscopy. He was a visiting distinguished professor at University of Colorado in 1972 and University of Sydney, Australia in 1975. He served as the Gordon Conference Chairman in Analytical Chemistry in 1974. Professor Emeritus James W. Robinson passed away in November, 2018, at 95 years of age.

Eileen M. Skelly Frame was adjunct professor, Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute (RPI), Troy, NY, and head of Full Spectrum Analytical Consultants. Dr. Skelly Frame was the first woman commissioned from the Drexel University Army ROTC program. She graduated from Drexel summa cum laude in chemistry. She served as Medical Service Corps officer in the U.S. Army from 1975 to 1986, rising to the rank of Captain. For the first five years of her military career, Eileen was stationed at the 10th Medical Laboratory at the U.S. Army Hospital in Landstuhl Germany. Thereafter, she was selected to attend a three-year Ph.D program in Chemistry at Louisiana State University. She received her doctorate in 1982 and became the first female Chemistry Professor at the U.S. Military Academy at West Point. Following her military service, she joined the General Electric Corporation (now GE Global Research) and supervised the atomic spectroscopy laboratory. In addition to her duties at RPI, she was Clinical and Adjunct Professor of Chemistry at Union College in Schenectady, NY. She was well known for her expertise in in the use of instrumental analysis to characterize a wide variety of substances, from biological samples and cosmetics to high-temperature superconductors, polymers, metals, and alloys. She was an active member of the American Chemical Society for 45 years, and a member of several ASTM committees. Dr. Skelly Frame passed away in January of 2020, shortly after completion of this manuscript.

George M. Frame II is a retired scientific director, Chemical Biomonitoring Section of the Wadsworth Laboratory, New York State Department of Health, Albany. He has a wide range of experience in analytical chemistry and has worked at the GE Corporate R&D Center (now GE Global Research), Pfizer Central Research, the US Coast Guard R&D Center, the Maine Medical Center, and in the US Air Force Biomedical Sciences Corps. He is a member of the American Chemical Society. Dr. Frame earned his AB in chemistry from Harvard College, Cambridge, Massachusetts, and his PhD in analytical chemistry from Rutgers University, New Brunswick, New Jersey.