Muutke küpsiste eelistusi

E-raamat: Integrable Systems: Twistors, Loop Groups, and Riemann Surfaces

(Emeritus Fellow of All Souls College, University of Oxford), (Professor in the Department of Mathematical Sciences, Durham University), (Savilian Professor of Geometry at the University of Oxford)
  • Formaat - PDF+DRM
  • Hind: 42,69 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This textbook is designed to give graduate students an understanding of integrable systems via the study of Riemann surfaces, loop groups, and twistors. The book has its origins in a series of lecture courses given by the authors, all of whom are internationally known mathematicians and renowned expositors. It is written in an accessible and informal style, and fills a gap in the existing literature. The introduction by Nigel Hitchin addresses the meaning of integrability: how do we recognize an integrable system? His own contribution then develops connections with algebraic geometry, and includes an introduction to Riemann surfaces, sheaves, and line bundles. Graeme Segal takes the Kortewegde Vries and nonlinear Schrodinger equations as central examples, and explores the mathematical structures underlying the inverse scattering transform. He explains the roles of loop groups, the Grassmannian, and algebraic curves. In the final part of the book, Richard Ward explores the connection between integrability and the self-dual Yang-Mills equations, and describes the correspondence between solutions to integrable equations and holomorphic vector bundles over twistor space.

Arvustused

The subject of the book is fascinating and written versions of the lecture series are nicley presented and preserve well the informal spirit of the lectures. This is a very useful book for graduate students and for mathematicians (or physicists) from other fields interested in the topic. * EMS * The lecturers cover an enormous amount of material, ranging from algeraic geometry and the theory of Riemann surfaces to loop groups, connections, Yang-Mills equations and twister theory. However despite this wide range, the book is surprisingly self-contained and readable. * Bulletin of the London Mathematical Society *

List of contributors
ix
1 Introduction
1(10)
Nigel Hitchin
Bibliography
10(1)
2 Riemann surfaces and integrable systems
11(42)
Nigel Hitchin
1 Riemann surfaces
11(6)
2 Line bundles and sheaves
17(6)
3 Vector bundles
23(6)
4 Direct images of line bundles
29(7)
5 Matrix polynomials and Lax pairs
36(9)
6 Completely integrable Hamiltonian systems
45(7)
Bibliography
52(1)
3 Integrable systems and inverse scattering
53(68)
Graeme Segal
1 Solitons and the KdV equation
53(5)
2 Classical dynamical systems and integrability
58(5)
3 Some classical integrable systems
63(3)
4 Formal pseudo-differential operators
66(5)
5 Scattering theory
71(6)
6 The non-linear Schrodinger equation and its scattering
77(4)
7 Families of flat connections and harmonic maps
81(3)
8 The KdV equation as an Euler equation
84(3)
9 Determinants and holonomy
87(6)
10 Local conservation laws
93(3)
11 The classical moment problem
96(3)
12 Inverse scattering
99(2)
13 Loop groups and the restricted Grassmannian
101(9)
14 Integrable systems and the restricted Grassmannian
110(6)
15 Algebraic curves and the Grassmannian
116(2)
Bibliography
118(3)
4 Integrable Systems and Twistors
121(14)
Richard Ward
1 General comments on integrable systems
121(1)
2 Some elementary geometry
122(2)
3 First example: self-dual Yang--Mills
124(3)
4 Twistor space and holomorphic vector bundles
127(1)
5 Yang--Mills--Higgs solitons and minitwistor space
128(4)
6 Generalizations
132(2)
Bibliography
134(1)
Index 135
Nigel Hitchin is Savilian Professor of Geometry at the University of Oxford

Graeme Segal is Emeritus Fellow of All Souls College, University of Oxford

Richard Ward is Professor in the Department of Mathematical Sciences, Durham University