Muutke küpsiste eelistusi

E-raamat: Intelligent Autonomous Systems 16: Proceedings of the 16th International Conference IAS-16

Edited by , Edited by , Edited by , Edited by
  • Formaat - EPUB+DRM
  • Hind: 246,38 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book presents the latest advances and research achievements in the fields of autonomous robots and intelligent systems, presented at the IAS-16 conference, conducted virtually in Singapore, from 22 to 25 June 2021. IAS is a common platform for an exchange and sharing of ideas among the international scientific research and technical community on some of the main trends of robotics and autonomous systems: navigation, machine learning, computer vision, control, and robot design—as well as a wide range of applications. IAS-16 reflects the rise of machine learning and deep learning developments in the robotics field, as employed in a variety of applications and systems. All contributions were selected using a rigorous peer-reviewed process to ensure their scientific quality. Despite the challenge of organising a conference during a pandemic, the IAS biennial conference remains an essential venue for the robotics and autonomous systems community ever since its inception in 1986.

Chapters 46 of this book is available open access under a CC BY 4.0 license at link.springer.com

Localization and SLAM.- Online Learning Based Long-Term Feature
Existence State Prediction for Visual Topological Localization.-  3D Nominal
Scene Reconstruction for Object Localization and UAS Navigation.-
Navigation.- Topometric Navigation Considering Movable Objects.- Developing a
collaborative robotic dishwasher cell system for restaurants.- Iterative
Improvement for the Heterogeneous Robotic Order Fulfillment Problem Using
Simulated Annealing.- Robotic cooking through pose extraction from human
natural cooking.- using OpenPose.- Multiple Object Detection and Segmentation
for Automated Removal in Additive Manufacturing with Service Robots.-
Determination of posture comfort zones for robot-human handover tasks.-
Biomimetic Robots.- A Simulation Study For Evaluating The Role Of
Pre-tensioned Springs In 3 Pneumatic Artificial Muscle Driven Joint
Mechanisms With Sliding Mode Controllers.- Effect of Tilted Ground on Muscle
Activity inHuman Sit-to-Stand Motion: Preliminary Result.- In-hand Object
Recognition for Sensorized Soft Hand.- Scaffolded Learning of In-place
Trotting Gait for a Quadruped Robot with Bayesian Optimization.- GradNet: A
Viscosity Gradient Approach to Achieve Dexterity in Soft Pneumatic
Actuators.- How to tune Humanoid Walking Parameters for better Performance.-
Machine Learning.- TridentNet: A Conditional Generative Model for Dynamic
Trajectory Generation.- Adaptive Eligibility Traces for Online Deep
Reinforcement Learning.-  Computer Vision.- Visualization of Dump Truck and
Excavator in Birds-eye View by Fisheye Cameras and 3D Range Sensor.- Fusion
of Radar- and Lidar-Data for Object-Tracking-Applications at Feature Level.-
Learning to Segment Human Body Parts with Synthetically Trained Deep
Convolutional Networks.- Detection and Classification of defects in plastic
components using a deep learning approach.