ei ole lubatud
ei ole lubatud
Digitaalõiguste kaitse (DRM)
Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).
Vajalik tarkvara
Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)
PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )
Seda e-raamatut ei saa lugeda Amazon Kindle's.
1. Introduction
2. Beam Feedback Control
2.1. Beam Feedback Overview
2.2. Problem Formulation
2.3. Beam Response Matrix Identification
2.4. Static Linear Feedback Controller Design
2.4.1. Difficulties in Inversing a Response Matrix
2.4.2. Singular Value Decomposition
2.4.3. Response Matrix Inverse with SVD
2.4.4. Response Matrix Inverse with Least-square Method
2.4.5. Robust Control Design
2.5. Summary
3. Beam Optimization
3.1. Beam Optimization Overview
3.1.1. Optimizations in Beam Control3.1.2. Formulation of Optimization Problems
3.1.3. Considerations of Online Optimization
3.2. Optimization Algorithms
3.2.1. A Test Function
3.2.2. Spontaneous Correlation Optimization
3.2.3. Random Walk Optimization
3.2.4. Robust Conjugate Direction Search
3.2.5. Genetic Algorithm
3.2.6. Particle Swarm Optimization
3.2.7. Summary of Optimization Algorithms
3.3. Beam Optimization Examples and Tools
3.3.1. Practical Considerations
2
3.3.2. FEL Optimization with SCO3.3.3. Operating Point Switching
3.3.4. Optimization Tools
3.4. Summary
4. Machine Learning for Beam Control
4.1. Overview of Machine Learning
4.1.1. Introduction
4.1.2. Machine Learning Models
4.1.3. Typical Applications of Machine Learning
4.2. Accelerator Modeling with Machine Learning
4.2.1. Artificial Neural Network Regression Model
4.2.2. Gaussian Process Regression Model
4.3. Applications of Machine-learning Models in Beam Control
4.3.1. Surrogate Models of Beam Response
4.3.2. Response Matrix Estimation with NN Surrogate Model
4.3.3. Beam Optimization with NN Surrogate Model
4.3.4. Feedforward Control with NN Surrogate Model
4.3.5. Beam Optimization with GP Surrogate Model
4.4. Feedback Control with Reinforcement Learning
4.4.1. Introduction to Reinforcement Learning
4.4.2. Feedback Controller Design with Natural Actor-critic Algorithm
4.4.3. Example: RF Cavity Controller Design
4.4.4. Example: Static Feedback Controller Design
4.4.5. Further Reading
4.5. Other Applications of Machine-learning in Accelerators
4.5.1. Virtual Diagnostics4.5.2. Fault Prediction
4.5.3. Classification
4.6. Summary