Muutke küpsiste eelistusi

E-raamat: Intelligent Information Processing XII: 13th IFIP TC 12 International Conference, IIP 2024, Shenzhen, China, May 3-6, 2024, Proceedings, Part II

Edited by , Edited by , Edited by
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 92,01 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The two-volume set IFIP AICT 703 and 704 constitutes the refereed conference proceedings of the 13th IFIP TC 12 International Conference on Intelligent Information Processing XII, IIP 2024, held in Shenzhen, China, during May 3–6, 2024. 

The 49 full papers and 5 short papers presented in these proceedings were carefully reviewed and selected from 58 submissions. 
The papers are organized in the following topical sections: 

Volume I: Machine Learning; Natural Language Processing; Neural and Evolutionary Computing; Recommendation and Social Computing; Business Intelligence and Risk Control; and Pattern Recognition.

Volume II: Image Understanding.
.- Early Anomaly Detection in Hydraulic Pumps Based on LSTM Traffic
Prediction Model.



.- Dynamic Parameter Estimation for Mixtures of Plackett-Luce Models.



.- Recognition of Signal Modulation Pattern Based on Multi-Task
Self-Supervised Learning.



.- Dependency-Type Weighted Graph Convolutional Network on End-to-End
Aspect-Based Sentiment Analysis.



.- Utilizing Attention for Continuous Human Action Recognition Based on
Multimodal Fusion of Visual and Inertial.



.- HARFMR: Human Activity Recognition with Feature Masking and
Reconstruction.



.- CAPPIMU: A Composite Activities Dataset for Human Activity Recognition
Utilizing Plantar Pressure and IMU Sensors.



.- Open-Set Sensor Human Activity Recognition Based on Reciprocal Time
Series.



.- Image Understanding.



.- A Concept-Based Local Interpretable Model-agnostic Explanation Approach
for Deep Neural Networks in Image Classification.



.- A Deep Neural Network-based Segmentation Method for Multimodal Brain Tumor
Images.



.- Graph Convolutional Networks for Predicting Mechanical Characteristics of
3D Lattice Structures.



.- 3D Object Reconstruction with Deep Learning.



.- Adaptive Prototype Triplet Loss for Cross-Resolution Face Recognition.



.- Hand Gesture Recognition Using a Multi-modal Deep Neural Network.