Muutke küpsiste eelistusi

E-raamat: Intelligent Nanomaterials

  • Formaat: PDF+DRM
  • Sari: Advanced Material Series
  • Ilmumisaeg: 11-Oct-2016
  • Kirjastus: Wiley-Scrivener
  • Keel: eng
  • ISBN-13: 9781119242796
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 242,00 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: PDF+DRM
  • Sari: Advanced Material Series
  • Ilmumisaeg: 11-Oct-2016
  • Kirjastus: Wiley-Scrivener
  • Keel: eng
  • ISBN-13: 9781119242796
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Overall, this book presents a detailed and comprehensive overview of the state-of-the-art development of different nanoscale intelligent materials for advanced applications. Apart from fundamental aspects of fabrication and characterization of nanomaterials, it also covers key advanced principles involved in utilization of functionalities of these nanomaterials in appropriate forms. It is very important to develop and understand the cutting-edge principles of how to utilize nanoscale intelligent features in the desired fashion. These unique nanoscopic properties can either be accessed when the nanomaterials are prepared in the appropriate form, e.g., composites, or in integrated nanodevice form for direct use as electronic sensing devices. In both cases, the nanostructure has to be appropriately prepared, carefully handled, and properly integrated into the desired application in order to efficiently access its intelligent features. These aspects are reviewed in detail in three themed sections with relevant chapters: Nanomaterials, Fabrication and Biomedical Applications; Nanomaterials for Energy, Electronics, and Biosensing; Smart Nanocomposites, Fabrication, and Applications.

Preface xvii
Part 1 Nanomaterials, Fabrication and Biomedical Applications
1 Electrospinning Materials for Skin Tissue Engineering
3(18)
Beste Kinikoglu
1.1 Skin Tissue Engineering Scaffolds
4(10)
1.1.1 Materials Used in Skin Tissue Engineering Scaffolds
5(1)
1.1.1.1 Natural Scaffolds
6(1)
1.1.1.2 Synthetic Scaffolds
7(2)
1.1.2 Scaffold Production Techniques Used in Skin Tissue Engineering
9(1)
1.1.2.1 Freeze-drying
9(2)
1.1.2.2 Electrospinning
11(3)
1.2 Conclusions
14(7)
References
15(6)
2 Electrospinning: A Versatile Technique to Synthesize Drug Delivery Systems
21(30)
Xueping Zhang
Dong Liu
Tianyan You
2.1 Introduction
21(1)
2.2 The Types of Delivered Drugs
22(7)
2.2.1 Antitumor/Anticancer Drugs
22(2)
2.2.2 Antibiotic
24(2)
2.2.3 Growth Factors
26(1)
2.2.4 Nucleic Acids
27(1)
2.2.5 Proteins
28(1)
2.3 Polymers Used in Electrospinning
29(7)
2.3.1 Natural Polymers
30(1)
2.3.1.1 Chitosan
30(1)
2.3.1.2 Silk Fibroin
30(2)
2.3.1.3 Cellulose Acetate
32(1)
2.3.2 Synthetic Polymers
32(1)
2.3.2.1 Synthetic Homopolymers
32(1)
2.3.2.2 Synthetic Copolymers
33(1)
2.3.3 Polymer Blends
34(1)
2.3.3.1 Blends of Natural Polymers
34(1)
2.3.3.2 Blends of Natural and Synthetic Polymers
35(1)
2.3.3.3 Blends of Synthetic Polymers
36(1)
2.3.3.4 Other Multicomponent Polymer Mixtures
36(1)
2.4 The Development of Electrospinning Process for Drug Delivery
36(5)
2.4.1 Coaxial Electrospinning
37(1)
2.4.2 Emulsion Electrospinning
38(1)
2.4.3 Multilayer Electrospinning
39(1)
2.4.4 Magnetic Nanofiber
40(1)
2.4.5 Post-modification of Electrospun Scaffolds
41(1)
2.5 Conclusions
41(10)
Acknowledgment
42(1)
References
42(9)
3 Electrospray Jet Emission: An Alternative Interpretation Invoking Dielectrophoretic Forces
51(40)
Francesco Aliotta
Oleg Gerasymov
Pietro Calandra
3.1 Introduction
52(2)
3.2 Electrospray: How It Works?
54(9)
3.3 Historical Background
63(2)
3.4 How the Current (and Wrong) Description of the Electrospray Process Has Been Generated?
65(3)
3.5 What Is Wrong in the Current Description?
68(2)
3.6 Some Results Shedding More Light
70(2)
3.7 Discriminating between Electrophoretic and Dielectrophoretic Forces
72(4)
3.8 Some Theoretical Aspects of Dielectrophoresis
76(7)
3.9 Conclusions
83(8)
References
86(5)
4 Advanced Silver and Oxide Hybrids of Catalysts During Formaldehyde Production
91(16)
Anita Kovac Kralj
4.1 Introduction
92(1)
4.2 The Catalysis
93(2)
4.2.1 Limited Hybrid Catalyst Methodology
94(1)
4.3 Case Study
95(2)
4.3.1 Silver Process
95(1)
4.3.2 Oxide Process
96(1)
4.4 Limited Hybrid Catalyst Method for Formaldehyde Production
97(7)
4.4.1 Analyzing the Pure Catalyst Process
97(1)
4.4.2 Graphical Presentation of Catalyst Process
97(1)
4.4.3 Advanced Hybrid Catalyst Process
98(3)
4.4.4 Choosing the Best Advanced Hybrid Catalyst Process
101(1)
4.4.5 Simulation of the Best Advanced Hybrid Catalyst Process
102(2)
4.5 Conclusion
104(1)
4.6 Nomenclatures
105(2)
References
105(2)
5 Physico-chemical Characterization and Basic Research Principles of Advanced Drug Delivery Nanosystems
107(20)
Natassa Pippa
Stergios Pispas
Costas Demetzos
5.1 Introduction
108(1)
5.2 Basic Research Principles and Techniques for the Physicochemical Characterization of Advanced Drug Delivery Nanosystems
108(14)
5.2.1 Microscopy
108(1)
5.2.1.1 Optical Microscopy
108(1)
5.2.1.2 Electron Microscopy
109(1)
5.2.1.3 Scanning Probe Microscopy
109(2)
5.2.2 Thermal Analysis
111(1)
5.2.2.1 Classification of Thermal Analysis Techniques
111(2)
5.2.2.2 Differential Scanning Calorimetry
113(4)
5.2.3 Measurements of Size Distribution and (-Potential of Nanocolloidal Dispersion Systems and Their Evaluation
117(1)
5.2.3.1 Photon Correlation Spectroscopy (PCS) and Other Light-scattering Techniques
118(4)
5.3 Conclusions
122(5)
References
122(5)
6 Nanoporous Alumina as an Intelligent Nanomaterial for Biomedical Applications
127(34)
Moom Sinn Aw
Dusan Losic
6.1 Introduction
127(2)
6.2 Nanoporous Anodized Alumina as a Drug Nano-carrier
129(9)
6.2.1 Intelligent Properties of NAA for Drug Delivery
129(9)
6.3 Biocompatibility of NAA and NNAA Materials
138(5)
6.4 NAA for Diabetic and Pancreatic Applications
143(1)
6.5 NAA Applications in Orthopedics
144(4)
6.6 NAA Applications for Heart, Coronary, and Vasculature Treatment
148(2)
6.7 NAA in Dentistry
150(2)
6.8 Conclusions and Future Prospects
152(9)
Acknowledgment
153(1)
References
154(7)
7 Nanomaterials: Structural Peculiarities, Biological Effects, and Some Aspects of Application
161(38)
N.F. Starodub
M.V. Taran
A.M. Katsev
C. Bisio
M. Guidotti
7.1 Introduction
162(2)
7.2 Physicochemical Properties Determining the Bioavailability and Toxicity of Nanoparticles
164(4)
7.3 Current Nanoecotoxicological Knowledge
168(18)
7.3.1 Main Causes of NPs Toxicity
169(1)
7.3.2 Risk Assessment for NPs in the Environment
170(1)
7.3.3 Peculitiaries of Effects of Some NPs on the Living Objects
171(1)
7.3.3.1 Experiments with Luminescent Bacteria
171(3)
7.3.3.2 Daphnias as Indicators of Influence of Nanostructured Material
174(1)
7.3.3.3 Investigations with Model Plants
174(2)
7.3.3.4 Experiments with Plants under Real Conditions
176(1)
7.3.3.5 Effect of NPs of Some Oxide Metals on the Bioluminescent Bacteria
177(3)
7.3.3.6 Reaction of Daphnias on the Effect of Some NPs
180(1)
7.3.3.7 Effect of the Nanostructured Solids on the Physiological Characteristics of the Common Bean (Phaseolus vulgaris)
181(1)
7.3.3.8 Effect of the Colloidal NPs on the Plants at Grow under Carbonate Chlorosis Conditions
182(4)
7.4 Modern Direction of the Application of Nanostructured Solids in Detoxication Processes
186(2)
7.4.1 From Conventional Decontamination to Innovative Nanostructured Systems
186(2)
7.5 Conclusions
188(11)
Acknowledgments
189(1)
References
189(10)
8 Biomedical Applications of Intelligent Nanomaterials
199(50)
M. D. Fahmy
H. E. Jazayeri
M. Razavi
M. Hashemi
M. Omidi
M. Farahani
E. Salahinejad
A. Yadegari
S. Pitcher
Lobat Tayebi
8.1 Introduction
200(2)
8.2 Polymeric Nanoparticles
202(4)
8.2.1 General Features
202(1)
8.2.2 Poly-D,L-lactide-co-glycolide
203(1)
8.2.3 Polylactic Acid
203(1)
8.2.4 Polycaprolactone (PCL)
204(1)
8.2.5 Chitosan
204(1)
8.2.6 Gelatin
204(1)
8.2.7 Potential and Challenges
205(1)
8.3 Lipid-based Nanoparticles
206(7)
8.3.1 Different Types
206(1)
8.3.2 Applications
207(1)
8.3.2.1 Intrinsic Stimuli
207(1)
8.3.2.2 Extrinsic Stimuli
208(3)
8.3.3 Potential and Challenges
211(2)
8.4 Carbon Nanostructures
213(6)
8.4.1 General Feature
213(1)
8.4.2 Zero-dimensional Carbon Nanostructures
213(2)
8.4.3 One-dimensional Carbon Nanostructures
215(1)
8.4.4 Two-dimensional Carbon Nanostructures
216(1)
8.4.5 Three-dimensional Carbon Nanostructures
217(1)
8.4.6 Potential and Challenges
218(1)
8.5 Nanostructured Metals
219(4)
8.5.1 Nitinol
219(1)
8.5.2 Other Metallic Nanoparticles
220(1)
8.5.3 Potential and Challenges
221(2)
8.6 Hybrid Nanostructures
223(5)
8.6.1 Smart Nanostructured Platforms for Drug Delivery
224(1)
8.6.1.1 Metal-based Smart Composite and Hybrid Nanostructures
224(1)
8.6.1.2 Carbon-based Smart Composite and Hybrid Nanostructures
225(1)
8.6.2 Smart Nanostructures for Diagnostic Imaging
226(1)
8.6.2.1 Metal-based Smart Composite and Hybrid Nanostructures
227(1)
8.6.2.2 Carbon-based Smart Composite and Hybrid Nanostructures
227(1)
8.7 Concluding Remarks
228(21)
References
229(20)
Part 2 Nanomaterials for Energy, Electronics, and Biosensing
9 Phase Change Materials as Smart Nanomaterials for Thermal Energy Storage in Buildings
249(46)
M. Kheradmand
M. Abdollahzadeh
M. Azenha
J.L.B. de Aguiar
9.1 Introduction
250(2)
9.2 Phase Change Materials: Definition, Principle of Operation, and Classifications
252(2)
9.3 PCM-enhanced Cement-based Materials
254(1)
9.4 Hybrid PCM for Thermal Storage
255(12)
9.5 Numerical Simulations
267(2)
9.5.1 Numerical Simulation of Heat Transfers in the Context of Building Physics
267(1)
9.5.2 Governing Equations
268(1)
9.6 Thermal Modeling of Phase Change
269(11)
9.6.1 The Enthalpy-porosity Method
269(1)
9.6.2 The Effective Heat Capacity Method
270(1)
9.6.3 Numerical Simulation of Small-scale Prototype
271(1)
9.6.4 Results of the Numerical Simulations of Prototype
272(1)
9.6.5 Case Study of a Simulated Building
273(3)
9.6.6 Results of Thermal Behavior and Energy Saving
276(1)
9.6.7 Global Performance of a Building Systems with Hybrid PCM
277(3)
9.7 Nanoparticle-enhanced Phase Change Material
280(8)
9.7.1 Modeling nanoparticle-enhanced PCM
282(1)
9.7.2 Definition of the Case study
283(1)
9.7.3 Results of Case Study with Nanoparticle-enhanced Phase Change Material
284(4)
9.8 Conclusions (General Remarks)
288(7)
References
289(6)
10 Nanofluids with Enhanced Heat Transfer Properties for Thermal Energy Storage
295(66)
Manila Chieruzzi
Adio Miliozzi
Luigi Torre
Jose Maria Kenny
10.1 Introduction
296(2)
10.2 Thermal Energy Storage
298(15)
10.2.1 Sensible Heat Thermal Storage
301(2)
10.2.2 Latent Heat Thermal Storage
303(6)
10.2.3 Thermochemical Storage
309(4)
10.2.4 Final Remarks
313(1)
10.3 Nanofluids for Thermal Energy Storage
313(17)
10.3.1 Base Fluid
316(2)
10.3.2 Nanoparticles
318(9)
10.3.3 Methods of Nanofluid Preparation
327(3)
10.4 Nanofluids Based on Molten Salts: Enhancement of Thermal Properties
330(19)
10.4.1 Specific Heat
331(9)
10.4.2 Latent Heat of Fusion and Melting Temperature
340(4)
10.4.3 Thermal Conductivity
344(3)
10.4.4 Thermal Storage
347(2)
10.5 Conclusions
349(12)
References
351(10)
11 Resistive Switching of Vertically Aligned Carbon Nanotubes for Advanced Nanoelectronic Devices
361(34)
O.A. Ageev
Yu. F. Blinov
M.V. Il'ina
B.G. Konoplev
V.A. Smirnov
11.1 Introduction
362(1)
11.2 Theoretical Description of Resistive Switching Mechanism of Structures Based on VACNT
363(14)
11.2.1 The Modeling of the Deformation of the VACNT Affected by a Local External Electric Field
364(6)
11.2.2 The Modeling of the Processes of Polarization and Piezoelectric Charge Accumulation in a Vertically Aligned Carbon Nanotube
370(4)
11.2.3 The Modeling of the Memristor Effect in the Structure Based on a Vertically Aligned Carbon Nanotube
374(3)
11.3 Techniques for Measuring the Electrical Resistivity and Young's Modulus of VACNT Based on Scanning Probe Microscopy
377(7)
11.3.1 Techniques for Measuring Young's Modulus of VACNT Based on Nanoindentation
378(4)
11.3.2 Techniques for Measuring the Electrical Resistivity of VACNT Based on Scanning Tunnel Microscopy
382(2)
11.4 Experimental Studies of Resistive Switching in Structures Based on VACNT Using Scanning Tunnel Microscopy
384(11)
References
391(4)
12 Multi-objective Design of Nanoscale Double Gate MOSFET Devices Using Surrogate Modeling and Global Optimization
395(32)
Toufik Bentrcia
Faycal Djeffal
Elasaad Chebaki
12.1 Introduction
396(4)
12.2 Downscaling Parasitic Effects
400(5)
12.2.1 Short Channel Effect
401(1)
12.2.1.1 Drain-induced Barrier Lowering
401(1)
12.2.1.2 Channel Length Modulation
401(1)
12.2.1.3 Carrier Mobility Reduction
402(1)
12.2.2 Quantum Mechanical Confinement Effect
402(1)
12.2.2.1 Inversion Charge Displacement
403(1)
12.2.2.2 Poly-silicon Gate Depletion
403(1)
12.2.2.3 Threshold Voltage Shift
403(1)
12.2.3 Hot-carrier Effect
404(1)
12.2.3.1 Impact-ionization
404(1)
12.2.3.2 Carrier Injection
405(1)
12.2.3.3 Interface Trap Formation
405(1)
12.3 Modeling Framework
405(7)
12.3.1 Design of Computer Experiments
406(2)
12.3.2 Metamodel Development
408(2)
12.3.3 Multi-objective Optimization
410(2)
12.4 Simulation and Results
412(10)
12.5 Concluding Remarks
422(5)
References
422(5)
13 Graphene-based Electrochemical Biosensors: New Trends and Applications
427(24)
Georgia-Paraskevi Nikoleli
Stephanos Karapetis
Spyridoula Bratakou
Dimitrios P. Nikolelis
Nikolaos Tzamtzis
Vasillios N. Psychoyios
13.1 Introduction
428(1)
13.2 Scope of This Review
429(1)
13.3 Graphene and Sensors
430(1)
13.4 Graphene Nanomaterials Used in Electrochemical (Bio)sensors Fabrication
430(2)
13.5 Graphene-based Enzymatic Electrodes
432(5)
13.5.1 Graphene-based Electrochemical Enzymatic Biosensors for Glucose Detection
432(2)
13.5.2 Graphene-based Electrochemical Enzymatic Biosensors for Hydrogen Peroxide Detection
434(1)
13.5.3 Graphene-based Electrochemical Enzymatic Biosensors for NADH Detection
435(1)
13.5.4 Graphene-based Electrochemical Enzymatic Biosensors for Cholesterol Detection
435(2)
13.5.5 Graphene-based Electrochemical Enzymatic Biosensors for Urea Detection
437(1)
13.6 Graphene-based Electrochemical DNA Sensors
437(2)
13.7 Graphene-based Electrochemical Immunosensors
439(3)
13.7.1 Graphene-based Electrochemical Immunosensors for Biomarker Detection
440(1)
13.7.2 Graphene-based Electrochemical Immunosensors for Pathogen Detection
441(1)
13.8 Commercial Activities in the Field of Graphene Sensors
442(1)
13.9 Recent Developments in the Field of Graphene Sensors
442(1)
13.10 Conclusions and Future Prospects
443(8)
Acknowledgments
445(1)
References
445(6)
Part 3 Smart Nanocomposites, Fabrication, and Applications
14 Carbon Fibers-based Silica Aerogel Nanocomposites
451(50)
Agnieszka Slosarczyk
14.1 Introduction to Nanotechnology
451(3)
14.2 Chemistry of Sol-gel Process
454(8)
14.2.1 Characterization and Application of Silica Aerogels
454(2)
14.2.2 Synthesis of Silica Gels via Sol--gel Process
456(3)
14.2.3 Aging of Silica Gels
459(1)
14.2.4 Methods of Drying of Silica Gels
460(2)
14.3 Types of Silica Aerogel Nanocomposites
462(14)
14.3.1 Reinforcing the Silica Aerogel and Xerogel Structure in the Synthesis Stage
462(2)
14.3.2 Metal- and Metal Oxide-based Silica Aerogels
464(2)
14.3.3 Polymer-based Silica Aerogels
466(2)
14.3.4 Fiber-based Silica Aerogels
468(8)
14.4 Carbon Fiber-based Silica Aerogel Nanocomposites
476(17)
14.4.1 Characterization of Carbon Fibers and Chemical Modification of Their Surface
478(3)
14.4.2 Synthesis of Silica Aerogel: Carbon Fiber Nanocomposites in Relation to the Type of Precursor
481(1)
14.4.3 Drying of Silica Gel: Carbon Fiber Nanocomposites
482(2)
14.4.4 Research Methods Applied
484(1)
14.4.5 Physical and Chemical Characterization of Silica Aerogel and Xerogel Nanocomposites
485(8)
14.5 Conclusions
493(8)
References
494(7)
15 Hydrogel--Carbon Nanotubes Composites for Protection of Egg Yolk Antibodies
501(32)
Bellingeri Romina
Alustiza Fabrisio
Picco Natalia
Motta Carlos
C. Grosso Maria
Barbero Cesar
Acevedo Diego
Vivas Adriana
15.1 Introduction
502(2)
15.2 Polymeric Hydrogels
504(3)
15.2.1 Synthetic and Natural Hydrogels
504(1)
15.2.2 Intelligent Hydrogels
505(1)
15.2.3 Characterization of Hydrogels
506(1)
15.3 Carbon Nanotubes
507(4)
15.3.1 Dispersion of Carbon Nanotubes
508(1)
15.3.2 Toxicity of Carbon Nanotubes
509(1)
15.3.3 Noncovalent Functionalization Strategies
509(1)
15.3.4 Covalent Functionalization Strategies
510(1)
15.4 Polymer--CNT Composites
511(4)
15.4.1 Drug Delivery
512(1)
15.4.2 Tissue Engineering
513(1)
15.4.3 Electrical Cell Stimulation
514(1)
15.4.4 Antimicrobial Materials
515(1)
15.5 Egg Yolk Antibodies Protection
515(2)
15.6 In Vitro Evaluation of Nanocomposite Performance
517(1)
15.7 In Vivo Evaluation of Nanocomposite Performance
518(3)
15.7.1 Nanotechnology for Bovine Production Applications
519(1)
15.7.2 Nanotechnology for Porcine Production Applications
519(1)
15.7.3 Nanotechnology Applications in Other Animal Species
520(1)
15.8 Concluding Remarks and Future Trends
521(12)
References
522(11)
16 Green Fabrication of Metal Nanoparticles
533(22)
Anamika Mubayi
Sanjukta Chatterji
Geeta Watal
16.1 Introduction
533(2)
16.2 Development of Herbal Medicines
535(1)
16.3 Green Synthesis of Nanoparticles
536(3)
16.4 Characterization of Phytofabricated Nanoparticles
539(1)
16.5 Impact of Plant-mediated Nanoparticles on Therapeutic Efficacy of Medicinal Plants
540(10)
16.5.1 Antidiabetic Potential
543(2)
16.5.2 Antioxidant Potential
545(3)
16.5.3 Antimicrobial Potential
548(2)
16.6 Conclusions
550(5)
References
551(4)
Index 555
Ashutosh Tiwari is Secretary General, International Association of Advanced Materials; Chairman and Managing Director of Tekidag AB (Innotech); Associate Professor and Group Leader, Smart Materials and Biodevices at the world premier Biosensors and Bioelectronics Centre, IFM-Linköping University; Editor-in-Chief, Advanced Materials Letters; a materials chemist and docent in the Applied Physics with the specialization of Biosensors and Bioelectronics from Linköping University, Sweden.

Yogendra Kumar Mishra is the Group Leader at Functional Nanomaterials, Institute for Materials Science, University of Kiel, Germany.

Hisatoshi Kobayashi is a group leader of WPI Research center MANA, National Institute for Material Science, Tsukuba Japan.

Anthony (Tony) Turner's name is synonymous with the field of Biosensors. In November 2010, he joined Linköping University to create a new Centre for Biosensors and Bioelectronics.