Muutke küpsiste eelistusi

E-raamat: Interacting Electrons and Quantum Magnetism

  • Formaat - PDF+DRM
  • Hind: 67,91 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

In the excitement and rapid pace of developments, writing pedagogical texts has low priority for most researchers. However, in transforming my lecture l notes into this book, I found a personal benefit: the organization of what I understand in a (hopefully simple) logical sequence. Very little in this text is my original contribution. Most of the knowledge was collected from the research literature. Some was acquired by conversations with colleagues; a kind of physics oral tradition passed between disciples of a similar faith. For many years, diagramatic perturbation theory has been the major theoretical tool for treating interactions in metals, semiconductors, itiner­ ant magnets, and superconductors. It is in essence a weak coupling expan­ sion about free quasiparticles. Many experimental discoveries during the last decade, including heavy fermions, fractional quantum Hall effect, high­ temperature superconductivity, and quantum spin chains, are not readily accessible from the weak coupling point of view. Therefore, recent years have seen vigorous development of alternative, nonperturbative tools for handling strong electron-electron interactions. I concentrate on two basic paradigms of strongly interacting (or con­ strained) quantum systems: the Hubbard model and the Heisenberg model. These models are vehicles for fundamental concepts, such as effective Ha­ miltonians, variational ground states, spontaneous symmetry breaking, and quantum disorder. In addition, they are used as test grounds for various nonperturbative approximation schemes that have found applications in diverse areas of theoretical physics.

Muu info

Springer Book Archives
I Basic Models.- 1 Electron Interactions in Solids.- 2 Spin Exchange.- 3
The Hubbard Model and Its Descendants.- II Wave Functions and Correlations.-
4 Ground States of the Hubbard Model.- 5 Ground States of the Heisenberg
Model.- 6 Disorder in Low Dimensions.- 7 Spin Representations.- 8 Variational
Wave Functions and Parent Hamiltonians.- 9 From Ground States to
Excitations.- III Path Integral Approximations.- 10 The Spin Path Integral.-
11 Spin Wave Theory.- 12 The Continuum Approximation.- 13 Nonlinear Sigma
Model: Weak Coupling.- 14 The Nonlinear Sigma Model: Large N.- 15 Quantum
Antiferromagnets: Continuum Results.- 16 SU(N) Heisenberg Models.- 17 The
Large N Expansion.- 18 Schwinger Bosons Mean Field Theory.- 19 The
Semiclassical Theory of the t J Model.- IV Mathematical Appendices.-
Appendix A Second Quantization.- A.1 Fock States.- A.2 Normal Bilinear
Operators.- A.3 Noninteracting Hamiltonians.- A.4 Exercises.- Appendix B
Linear Response and Generating Functionals.- B.1 Spin Response Function.- B.2
Fluctuations and Dissipation.- B.3 The Generating Functional.- Appendix C
Bose and Fermi Coherent States.- C.1 Complex Integration.- C.2 Grassmann
Variables.- C.3 Coherent States.- C.4 Exercises.- Appendix D Coherent State
Path Integrals.- D.1 Constructing the Path Integral.- D.2 Normal Bilinear
Hamiltonians.- D.3 Matsubara Representation.- D.4 Matsubara Sums.- D.5
Exercises.- Appendix E The Method of Steepest Descents.