Muutke küpsiste eelistusi

E-raamat: Interacting Electrons: Theory and Computational Approaches

(University of Illinois, Urbana-Champaign), (University of Illinois, Urbana-Champaign), (École Polytechnique, Paris)
  • Formaat: PDF+DRM
  • Ilmumisaeg: 30-Jun-2016
  • Kirjastus: Cambridge University Press
  • Keel: eng
  • ISBN-13: 9781316560129
  • Formaat - PDF+DRM
  • Hind: 90,14 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 30-Jun-2016
  • Kirjastus: Cambridge University Press
  • Keel: eng
  • ISBN-13: 9781316560129

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Recent progress in the theory and computation of electronic structure is bringing an unprecedented level of capability for research. Many-body methods are becoming essential tools vital for quantitative calculations and understanding materials phenomena in physics, chemistry, materials science and other fields. This book provides a unified exposition of the most-used tools: many-body perturbation theory, dynamical mean field theory and quantum Monte Carlo simulations. Each topic is introduced with a less technical overview for a broad readership, followed by in-depth descriptions and mathematical formulation. Practical guidelines, illustrations and exercises are chosen to enable readers to appreciate the complementary approaches, their relationships, and the advantages and disadvantages of each method. This book is designed for graduate students and researchers who want to use and understand these advanced computational tools, get a broad overview, and acquire a basis for participating in new developments.

Muu info

This book sets out modern methods of computing properties of materials, including essential theoretical background, computational approaches, practical guidelines and instructive applications.
Preface; Part I. Interacting Electrons: Beyond the Independent-Particle
Picture:
1. The many electron problem: introduction;
2. Signatures of
electron correlation;
3. Concepts and models for interacting electrons; Part
II. Foundations of Theory for Many-Body Systems:
4. Mean fields and auxiliary
systems;
5. Correlation functions;
6. Many-body wavefunctions;
7. Particles
and quasi-particles;
8. Functionals in many-particle physics; Part III.
Many-Body Green's Function Methods:
9. Many-body perturbation theory:
expansion in the interaction;
10. Many-body perturbation theory via
functional derivatives;
11. The RPA and the GW approximation for the
self-energy;
12. GWA calculations in practice;
13. GWA calculations:
illustrative results;
14. RPA and beyond: the Bethe-Salpeter equation;
15.
Beyond the GW approximation;
16. Dynamical mean field theory;
17. Beyond the
single-site approximation in DMFT;
18. Solvers for embedded systems;
19.
Characteristic hamiltonians for solids with d and f states;
20. Examples of
calculations for solids with d and f states;
21. Combining Green's functions
approaches: an outlook; Part IV. Stochastic Methods:
22. Introduction to
stochastic methods;
23. Variational Monte Carlo;
24. Projector quantum Monte
Carlo;
25. Path integral Monte Carlo;
26. Concluding remarks; Part V.
Appendices: A. Second quantization; B. Pictures; C. Green's functions:
general properties; D. Matsubara formulation for Green's functions for T =
0; E. Time-ordering, contours, and non-equilibrium; F. Hedin's equations in a
basis; G. Unique solutions in Green's function theory; H. Properties of
functionals; I. Auxiliary systems and constrained search; J. Derivation of
the Luttinger theorem; K. Gutzwiller and Hubbard approaches; References;
Index.
Richard M. Martin is Emeritus Professor at the University of Illinois, Urbana-Champaign, and Consulting Professor at Stanford University. He has made extensive contributions to the field of modern electronic structure methods and the theory of interacting electron systems and and he is the author of the companion book Electronic Structure: Basic Theory and Methods. Lucia Reining is CNRS senior researcher at the Ecole Polytechnique Palaiseau and founding member of the European Theoretical Spectroscopy Facility. Her work covers many-body perturbation theory and time-dependant density functional theory and she is a recipient of the CNRS Silver Medal and a Fellow of the American Physical Society. David M. Ceperley is Blue Waters Professor at the University of Illinois, Urbana-Champaign, where he has pioneered the quantum Monte Carlo method, including the development of variational, diffusion and path integral Monte Carlo. He is a member of the US National Academy of Sciences and recipient of the Rahman Prize for Computational Physics of the APS and the Feenberg Medal for many-body physics.