Muutke küpsiste eelistusi

E-raamat: Interactions with Lattice Polytopes: Magdeburg, Germany, September 2017

  • Formaat - PDF+DRM
  • Hind: 184,63 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book collects together original research and survey articles highlighting the fertile interdisciplinary applications of convex lattice polytopes in modern mathematics. Covering a diverse range of topics, including algebraic geometry, mirror symmetry, symplectic geometry, discrete geometry, and algebraic combinatorics, the common theme is the study of lattice polytopes. These fascinating combinatorial objects are a cornerstone of toric geometry and continue to find rich and unforeseen applications throughout mathematics. The workshop Interactions with Lattice Polytopes assembled many top researchers at the Otto-von-Guericke-Universität Magdeburg in 2017 to discuss the role of lattice polytopes in their work, and many of their presented results are collected in this book. Intended to be accessible, these articles are suitable for researchers and graduate students interested in learning about some of the wide-ranging interactions of lattice polytopes in pure mathematics.
G. Averkov, Difference between families of weakly and strongly maximal
integral lattice-free polytopes.- V. Batyrev, A. Kasprzyk, and K. Schaller,
On the Fine interior of three-dimensional canonical Fano polytopes.- M.
Blanco, Lattice distances in 3-dimensional quantum jumps.- A. Cameron, R.
Dinu, M. Michaek, and T. Seynnaeve, Flag matroids: algebra and geometry.- D.
Cavey and E. Kutas, Classication of minimal polygons with specied
singularity content.- T. Coates, A. Corti, and Genival da Silva Jr, On the
topology of Fano smoothings.- S. Di Rocco and A. Lundman, Computing Seshadri
constants on smooth toric surfaces.- A. Higashitani, The characterisation
problem of Ehrhart polynomials of lattice polytopes.- J. Hofscheier, The ring
of conditions for horospherical homogeneous spaces.- K. Jochemko, Linear
recursions for integer point transforms.- V. Kiritchenko and M. Padalko,
Schubert calculus on NewtonOkounkov polytopes, Bach Le Tran, An
EisenbudGoto-type upper bound for the CastelnuovoMumford regularity of fake
weighted projective spaces.- M. Pabiniak, Toric degenerations in symplectic
geometry.- A. Petracci, On deformations of toric Fano varieties.- T. Prince,
Polygons of nite mutation type.- Hendrik Süß, Orbit spaces of maximal torus
actions on oriented Grassmannians of planes.- A. Tsuchiya, The reexive
dimension of (0, 1)-polytopes.-