Muutke küpsiste eelistusi

E-raamat: Interdisciplinary Approaches To Robot Learning

Edited by (Int'l Univ Bremen, Germany), Edited by (Imperial College Of Science, Technology & Medicine, Uk)
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 32,76 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Robots are being used in increasingly complicated and demanding tasks, often in environments that are complex or even hostile. Underwater, space and volcano exploration are just some of the activities that robots are taking part in, mainly because the environments that are being explored are dangerous for humans. Robots can also inhabit dynamic environments, for example to operate among humans, not just in factories, but also taking on more active roles. Recently, for instance, they have made their way into the home entertainment market. Given the variety of situations that robots will be placed in, learning becomes increasingly important.Robot learning is essentially about equipping robots with the capacity to improve their behaviour over time, based on their incoming experiences. The papers in this volume present a variety of techniques. Each paper provides a mini-introduction to a subfield of robot learning. Some also give a fine introduction to the field of robot learning as a whole. There is one unifying aspect to the work reported in the book, namely its interdisciplinary nature, especially in the combination of robotics, computer science and biology. This approach has two important benefits: first, the study of learning in biological systems can provide robot learning scientists and engineers with valuable insights into learning mechanisms of proven functionality and versatility; second, computational models of learning in biological systems, and their implementation in simulated agents and robots, can provide researchers of biological systems with a powerful platform for the development and testing of learning theories.
Interdisciplinary Approaches to Robot Learning: Introduction 1(7) J. Demiris A. Birk Bootstrapping the Developmental Process: The Filter Hypothesis 8(23) L. Berthouze Biomimetic Gaze Stabilization 31(22) T. Shibata S. Schaal Experiments and Models About Cognitive Map Learning for Motivated Navigation 53(42) P. Gaussier S. Lepretre M. Quoy A. Revel C. Joulain J. P. Banquet Learning Selection of Action for Cortically-inspired Robot Control 95(19) H. Frezza-Buet F. Alexandre Transferring Learned Knowledge in a Lifelong Learning Mobile Robot Agent 114(22) J. O Sullivan Of Hummingbirds and Helicopters: An Algebraic Framework for Interdisciplinary Studies of Imitation and Its Applications 136(26) C. Nehaniv K. Dautenhahn Evolving Complex Visual Behaviours Using Genetic Programming and Shaping 162(23) S. Perkins G. M. Hayes Preston: A System for the Evaluation of Behaviour Sequences 185 M. Wilson