Muutke küpsiste eelistusi

E-raamat: Interdisciplinary Engineering Sciences: Concepts and Applications to Materials Science

(Materials Research Centre, IISC Bangalore, India), (Indian Institute of Technology Bombay, Mumbai, India), (Indian Institute of Technology (BHU), Varanasi, India)
  • Formaat: 378 pages
  • Ilmumisaeg: 28-Apr-2020
  • Kirjastus: CRC Press
  • Keel: eng
  • ISBN-13: 9781000027419
  • Formaat - PDF+DRM
  • Hind: 59,79 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 378 pages
  • Ilmumisaeg: 28-Apr-2020
  • Kirjastus: CRC Press
  • Keel: eng
  • ISBN-13: 9781000027419

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book comprehends and emphasizes the importance of interdisciplinary nature of education and research from a materials science perspective. This approach is aimed at widening to comprehensively understand the physical, chemical, biological and engineering aspect of any materials science problem.

Interdisciplinary Engineering Sciences introduces and emphasizes the importance of the interdisciplinary nature of education and research from a materials science perspective. This approach is aimed to promote understanding of the physical, chemical, biological and engineering aspects of any materials science problem. Contents are prepared to maintain the strong background of fundamental engineering disciplines while integrating them with the disciplines of natural science. It presents key concepts and includes case studies on biomedical materials and renewable energy.

Aimed at senior undergraduate and graduate students in materials science and other streams of engineering, this book

  • Explores interdisciplinary research aspects in a coherent manner for materials science researchers
  • Presents key concepts of engineering sciences as relevant for materials science in terms of fundamentals and applications
  • Discusses engineering mechanics, biological and physical sciences
  • Includes relevant case studies and examples
Foreword xi
Preface xiii
Acknowledgments xvii
Authors xix
1 Introduction
1(8)
Section I Fundamentals
2 Bonding and Properties of Materials
9(28)
2.1 Introduction
9(3)
2.2 Bonding in Solids
12(18)
2.2.1 Ionic Bonding
12(2)
2.2.1.1 Calculation of Madelung Constant
14(1)
2.2.1.2 Calculation of Cation to Anion Radius Ratio
15(5)
2.2.2 Covalent Bonding
20(1)
2.2.2.1 Valence Shell Electron Pair Repulsion (VSEPR) Theory
21(1)
2.2.2.2 Hybridization and Hybrid Atomic Orbitals
22(1)
2.2.2.3 Types of Hybridization
23(4)
2.2.3 Metallic Bonding
27(1)
2.2.4 Secondary Bonds
28(1)
2.2.4.1 Van der Waals Bond
28(1)
2.2.4.2 Hydrogen Bonding
29(1)
2.3 Correlation between Bonding and Properties of Materials
30(5)
2.3.1 Mechanical Properties
30(1)
2.3.1.1 Elastic Behavior/Stiffness
30(1)
2.3.1.2 Strength
31(1)
2.3.1.3 Ductility and Brittleness
31(1)
2.3.1.4 Hardness
31(1)
2.3.2 Thermal Properties
32(1)
2.3.2.1 Melting Point
32(1)
2.3.2.2 Thermal Expansion
32(2)
2.3.2.3 Thermal Conductivity
34(1)
2.4 Closure
35(2)
References
35(2)
3 Advanced Bonding Theories for Complexes
37(18)
3.1 The Valence Bond Theory
37(5)
3.2 The Molecular Orbital Theory
42(4)
3.3 The Crystal Field Theory
46(5)
3.4 Jahn--Teller Distortions
51(2)
3.5 Closure
53(2)
Further Reading
53(2)
4 Engineering Mechanics and Mechanical Behavior of Materials
55(34)
4.1 Introduction
55(8)
4.1.1 Mechanical Properties: Principles and Assessment
58(1)
4.1.2 Conceptual Understanding of Stress and Strain
58(5)
4.2 Stress--Strain Response of Metals under Different Loadings
63(3)
4.3 Tensile Stress--Strain Response
66(1)
4.4 Deformation and Strengthening of Metals
67(4)
4.4.1 Solid Solution Strengthening
68(1)
4.4.2 Precipitation Hardening
69(1)
4.4.3 Dispersion Strengthening
69(1)
4.4.4 Work Hardening/Strain Hardening
70(1)
4.4.5 Grain-Size Strengthening
70(1)
4.5 Brittle Fracture of Ceramics
71(5)
4.6 Mechanical Properties of Polymers
76(2)
4.7 Numerical Approaches in Predicting Material Behavior
78(1)
4.7.1 Analytical Method
78(1)
4.7.2 Numerical Method
78(1)
4.7.3 Experimental Method
79(1)
4.8 Finite-Element Method
79(6)
4.8.1 Defining Terms
80(2)
4.8.2 General Procedure for FEA
82(1)
4.8.2.1 Thermal Analysis
83(1)
4.8.2.2 Structural Analysis
83(1)
4.8.3 Types of Coupled Field Analysis
83(1)
4.8.3.1 Sequentially Coupled Analysis
83(1)
4.8.3.2 Direct Coupled Analysis
84(1)
4.9 Closure
85(4)
References
86(3)
5 Conventional and Advanced Manufacturing of Materials
89(16)
5.1 Conventional Manufacturing of Metallic Materials
89(4)
5.2 Conventional and Advanced Manufacturing of Ceramics
93(2)
5.3 Consolidation and Shaping of Polymers
95(1)
5.4 Additive Manufacturing of Materials
96(5)
5.5 Machining Processes
101(2)
5.6 Closure
103(2)
References
103(2)
6 Electrochemistry and Electroanalytical Techniques
105(14)
6.1 The Laws of Thermodynamics
105(1)
6.2 Auxiliary Functions and Gibb's Free Energy
106(1)
6.3 The Chemical Potential
107(1)
6.4 Redox Reactions, Free Energy Change, and Electrochemical Potential
108(1)
6.5 Cell Voltage, Nernst Equation, and Effects of Concentration
108(2)
6.6 Polarization and Overpotential
110(1)
6.7 Electroanalytical Techniques: Concepts and Applications
111(6)
6.7.1 Cyclic Voltammetry
111(1)
6.7.2 Chronopotentiometry
112(2)
6.7.3 Chronoamperometry
114(1)
6.7.4 Electrochemical "Titrations"
115(2)
6.8 Closure
117(2)
Further Reading
117(2)
7 Chemical and Electrochemical Kinetics
119(10)
7.1 Reaction Kinetics, Arrhenius Relation, and Activated Complex
119(1)
7.2 Electrochemical Reaction Kinetics
120(1)
7.3 Butler--Volmer and Tafel Relations for Electrochemical Reaction Kinetics and Their Applications
121(3)
7.4 Determination of Diffusivity of Species and Analytes in Electrolyte
124(2)
7.5 Overview of Implications of Reaction Kinetics toward Technological Demands
126(2)
7.6 Closure
128(1)
References
128(1)
8 Introduction to the Biological System
129(16)
8.1 Introduction
129(1)
8.2 Protein: Structure and Characteristics
129(2)
8.3 Eukaryotic and Prokaryotic Cells
131(1)
8.4 Structural Details of Eukaryotic Cell
131(2)
8.5 Structure of Nucleic Acids
133(2)
8.5.1 Structure of DNA
134(1)
8.5.2 Structure of RNA
134(1)
8.6 Transcription and Translation Process
135(1)
8.7 Cell Fate Processes
136(3)
8.7.1 Cell Differentiation
136(1)
8.7.2 Cell Migration
136(1)
8.7.3 Cell Division
137(1)
8.7.4 Cell Death
137(2)
8.8 Tissue
139(1)
8.9 Generic Description of Bacterial Cells
140(1)
8.10 Bacteria Growth
141(1)
8.11 Bacterial--Material Interaction and Biofilm Formation
142(2)
8.12 Closure
144(1)
References
144(1)
9 Elements of Bioelectricity
145(28)
9.1 Introduction to Cell Membranes
145(2)
9.2 Integral Membrane Proteins
147(1)
9.2.1 Open Channels
147(1)
9.2.2 Gated Channels
147(1)
9.2.3 Carriers
147(1)
9.3 Transport Kinetics across Cell Membrane
148(4)
9.3.1 Passive Transport
149(1)
9.3.2 Active Transport
150(2)
9.4 Electrical Equivalent of the Cell Membrane
152(2)
9.5 Interaction of Living Cells with E-Field
154(15)
9.5.1 E-Field Effects on Living Cells
154(3)
9.5.2 Model Evolution
157(3)
9.5.3 Model Implications
160(3)
9.5.4 Electroporation
163(2)
9.5.5 Induced Current/Voltage across Cell/Nuclear Membranes
165(4)
9.6 Closure
169(4)
References
169(4)
10 Physical Laws of Solar-Thermal Energy Harvesting
173(16)
10.1 Electromagnetic Spectrum and Solar Range
173(1)
10.2 Physics of Reflection Phenomenon
174(6)
10.2.1 Interaction of Light with Matter
174(1)
10.2.1.1 Absorption
175(1)
10.2.1.2 Reflection
175(4)
10.2.1.3 Transmission
179(1)
10.3 Spectrally Selective Optical Properties
180(3)
10.3.1 Solar Absorptance
180(1)
10.3.2 Thermal Emittance
181(2)
10.3.3 Solar Selectivity
183(1)
10.4 Performance Evaluation
183(1)
10.4.1 Merit Function and Absorber Efficiency
183(1)
10.5 Closure
184(5)
References
184(5)
Section II Applications
11 Environmental/Societal Needs of Alternate Energy and Energy Storage
189(12)
11.1 Science and Technology toward Efficient Energy "Harvesting" from the Sun and Wind
189(6)
11.1.1 Harvesting the Solar Energy via Photovoltaics
189(5)
11.1.2 Harvesting the Wind Energy via Mechanical Turbines
194(1)
11.2 Reducing Negative Environmental Impacts
195(3)
11.3 Need for Efficient Storage of Energy "Harvested" from Renewable Sources
198(1)
11.4 Closure
199(2)
References
199(2)
12 Spectrally Selective Solar Absorbers and Optical Reflectors
201(20)
12.1 Importance of Solar Mirrors
201(1)
12.2 Existing Issues with Solar Reflectors
202(1)
12.3 Need for Development of New Reflector Materials
202(1)
12.4 CSP Technology
203(5)
12.4.1 Multifunctional High Reflective System
207(1)
12.4.2 Silver Mirror with Alumina Protective Layer
207(1)
12.5 Solar Selective Absorbers
208(1)
12.6 Multilayer Absorbers
209(1)
12.7 Dielectric/Metal/Dielectric (DMD) Absorbers
209(6)
12.7.1 MgF2/Mo/MgF2
209(1)
12.7.2 W/WAlN/WAlON/Al2O3
210(5)
12.7.3 TiB2/TiB(N)/Si3N4
215(1)
12.8 Closure
215(6)
References
217(4)
13 Advanced Electrochemical Energy Storage Technologies and Integration
221(24)
13.1 Historical Perspectives of Electrochemical Energy Storage Technologies
221(5)
13.2 Looking Inside the Electrochemical Energy Storage Technologies
226(5)
13.3 Correlations between Chemical Sciences, Materials Science, Electrochemical Science, and Battery/Supercapacitor Technology
231(7)
13.3.1 Charge Carrying Capacity of Electrodes
231(1)
13.3.2 The Cell Voltage, Dependence on Electrodes and Electrochemical Parameters
232(1)
13.3.3 The Cycle Life
233(1)
13.3.4 Various Interrelated Aspects and Challenges
234(4)
13.4 Advancement in Supercapacitor and Battery Science and Technology
238(2)
13.5 Efficient Integration and Usage of Such Technologies
240(3)
13.6 Closure
243(2)
References
244(1)
14 Ceramics for Armor Applications
245(16)
14.1 Development of Ceramic Armors
245(6)
14.1.1 Classification
246(1)
14.1.2 Property Requirements for an Armor System
246(5)
14.1.3 Ballistic Performance
251(1)
14.2 Overview of Functionally Graded Armor Materials
251(1)
14.3 Summary of Published Results on TiB2-Based FGM
252(4)
14.3.1 Microstructure and Mechanical Properties
253(1)
14.3.2 Dynamic Compression Properties
254(2)
14.4 Correlation between Theory and Experimental Measurements of Dynamic Strength
256(2)
14.5 Closure
258(3)
References
259(2)
15 Functionally Graded Materials for Bone Tissue Engineering Applications
261(20)
15.1 Introduction
261(3)
15.2 Microstructure of HA-Based FGMs
264(1)
15.3 Dielectric Response of HA and FGMs
265(4)
15.4 AC Conductivity Behavior
269(4)
15.5 Impedance Spectroscopy
273(2)
15.6 Closure
275(6)
References
276(5)
16 Design, Prototyping, and Performance Qualification of Thermal Protection Systems for Hypersonic Space Vehicles
281(18)
16.1 Introduction
281(2)
16.2 Laboratory-Scale Development of UHTCs
283(1)
16.3 Performance-Limiting Property Assessment Using Arc Jet Testing
283(6)
16.3.1 Transient Thermal and Coupled Thermostructural Analysis
285(3)
16.3.2 Thermodynamic Feasibility of Oxidation Reactions
288(1)
16.4 Thermo-Structural Design of Thermal Protection System
289(5)
16.4.1 CFD Analysis: Hypersonic Flow around Leading Edge
290(1)
16.4.2 Finite-Element-Based Coupled Thermostructural Analysis
291(3)
16.5 Closure
294(5)
References
296(3)
17 A Way Forward
299(12)
17.1 Interdisciplinary Innovation and Translational Research
299(1)
17.2 Integrated Understanding of Interdisciplinary Sciences
300(1)
17.3 Challenges in Translational Research
301(1)
17.4 Examples of Multi-Institutional Translational Research in Healthcare Domain
302(1)
17.5 Examples of Multi-Institutional Translational Research in Energy Sector
302(1)
17.6 Impact of Translational Research
303(1)
17.7 Research Training of Next-Generation Researchers
304(1)
17.8 Educational Impact
305(6)
References
307(3)
Further Reading
310(1)
Appendix 311(34)
Index 345
Ashutosh Kumar Dubey is an Assistant Professor and Ramanujan Fellow in the Department of Ceramic Engineering at Indian Institute of Technology (BHU), Varanasi, UP, India. His research interests include external electric field and surface charge mediated biocompatibility evaluation of electro-bioceramics, piezoelectric tougheneing of bioceramics, functionally graded materials, nanoporous bio-ceramics, orthopedic biomaterials, and analytical computation. He received the Young Scientist Award from the Indian Science Congress Association (2011-2012)and the Indian Ceramic Society (2015; Dr. R. L. Thakur Memorial Award), Japan Society for the Promotion of Sciences (JSPS) Fellowship for Foreign Researchers (2012-14) and Ramanujan Fellowship the Department of Science and Technology, government of India (2015-20).

Amartya Mukhopadhyay is an Associate Professor at the Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai, India. His research interests include materials for electrochemical energy storage and engineering ceramics. He has been awarded the INAE Young Engineer Award 2016, ASM-IIM North America Visiting Lectureship 2016, IIT Bombay Young Investigator Award 2014, Dr. R. L. Thakur Memorial Award (as Young Scientist) of the Indian Ceramic Society in 2013 and has also been recognized by the Royal Society of Chemistry (UK) journals as one of the 2019 Emerging Investigators.

Bikramjit Basu is a Professor at the Materials Research Center and an Associate faculty at the Center for BioSystems Science & Engineering as well as at Interdiscipinary Center for Energy Research, at Indian Institute of Science (IISc), Bangalore, India. He is a Visiting Professor at School of Materials, University of Manchester, UK and at Wuhan University of Technology, China. His research integrates the concepts of engineering, physical and biological sciences to develop novel materials science-based solutions for solar energy harvesting and human healthcare. A recipient of Indias highest Science & Technology award, the Shanti Swarup Bhatnagar prize (2013), Professor Basu is an elected Fellow of the American Ceramic Society (2019), American Institute of Medical and Biological Engineering (2017), National Academy of Medical Sciences (2017), Indian National Academy of Engineering (2015) and National Academy of Sciences, India (2013).