Preface |
|
xv | |
|
1 In Silico Molecular Modeling and Docking Analysis in Lung Cancer Cell Proteins |
|
|
1 | (1) |
|
|
|
|
2 | (2) |
|
|
4 | (1) |
|
1.2.1 Sequence of Protein |
|
|
4 | (1) |
|
|
4 | (1) |
|
1.2.3 Physiochemical Characterization |
|
|
4 | (1) |
|
1.2.4 Determination of Secondary Models |
|
|
4 | (1) |
|
1.2.5 Determination of Stability of Protein Structures |
|
|
4 | (1) |
|
1.2.6 Identification of Active Site |
|
|
4 | (1) |
|
1.2.7 Preparation of Ligand Model |
|
|
5 | (1) |
|
1.2.8 Docking of Target Protein and Phytocompound |
|
|
5 | (1) |
|
1.3 Results and Discussion |
|
|
5 | (13) |
|
1.3.1 Determination of Physiochemical Characters |
|
|
5 | (2) |
|
1.3.2 Prediction of Secondary Structures |
|
|
7 | (1) |
|
1.3.3 Verification of Stability of Protein Structures |
|
|
7 | (7) |
|
1.3.4 Identification of Active Sites |
|
|
14 | (1) |
|
1.3.5 Target Protein-Ligand Docking |
|
|
14 | (4) |
|
|
18 | (5) |
|
|
18 | (5) |
|
2 Medical Data Classification in Cloud Computing Using Soft Computing With Voting Classifier: A Review |
|
|
23 | (22) |
|
|
|
|
|
24 | (3) |
|
2.1.1 Security in Medical Big Data Analytics |
|
|
24 | (1) |
|
|
24 | (1) |
|
|
25 | (1) |
|
|
25 | (1) |
|
|
26 | (1) |
|
|
26 | (1) |
|
2.2 Access Control-Based Security |
|
|
27 | (3) |
|
|
27 | (1) |
|
2.2.1.1 User Password Authentication |
|
|
28 | (1) |
|
2.2.1.2 Windows-Based User Authentication |
|
|
28 | (1) |
|
2.2.1.3 Directory-Based Authentication |
|
|
28 | (1) |
|
2.2.1.4 Certificate-Based Authentication |
|
|
28 | (1) |
|
2.2.1.5 Smart Card-Based Authentication |
|
|
29 | (1) |
|
|
29 | (1) |
|
2.2.1.7 Grid-Based Authentication |
|
|
29 | (1) |
|
2.2.1.8 Knowledge-Based Authentication |
|
|
29 | (1) |
|
2.2.1.9 Machine Authentication |
|
|
29 | (1) |
|
2.2.1.10 One-Time Password (OTP) |
|
|
30 | (1) |
|
|
30 | (1) |
|
2.2.1.12 Global Authorization |
|
|
30 | (1) |
|
|
30 | (2) |
|
2.3.1 Role and Purpose of Design |
|
|
31 | (1) |
|
|
31 | (1) |
|
|
31 | (1) |
|
|
31 | (1) |
|
|
32 | (4) |
|
|
32 | (1) |
|
|
33 | (1) |
|
|
33 | (1) |
|
2.4.4 Soft Computing Techniques for Data Classification |
|
|
34 | (2) |
|
|
36 | (6) |
|
|
42 | (3) |
|
|
43 | (2) |
|
3 Research Challenges in Pre-Copy Virtual Machine Migration in Cloud Environment |
|
|
45 | (28) |
|
|
|
|
46 | (8) |
|
|
46 | (1) |
|
3.1.1.1 Cloud Service Provider |
|
|
47 | (1) |
|
3.1.1.2 Data Storage and Security |
|
|
47 | (1) |
|
|
48 | (1) |
|
3.1.2.1 Virtualization Terminology |
|
|
49 | (1) |
|
3.1.3 Approach to Virtualization |
|
|
50 | (1) |
|
|
51 | (1) |
|
|
51 | (1) |
|
3.1.6 Benefits of Virtualization |
|
|
51 | (1) |
|
3.1.7 Virtual Machine Migration |
|
|
51 | (1) |
|
|
52 | (1) |
|
|
52 | (1) |
|
|
53 | (1) |
|
3.2 Existing Technology and Its Review |
|
|
54 | (2) |
|
|
56 | (9) |
|
3.3.1 Basic Overview of VM Pre-Copy Live Migration |
|
|
57 | (1) |
|
3.3.2 Improved Pre-Copy Approach |
|
|
58 | (2) |
|
3.3.3 Time Series-Based Pre-Copy Approach |
|
|
60 | (2) |
|
3.3.4 Memory-Bound Pre-Copy Live Migration |
|
|
62 | (1) |
|
3.3.5 Three-Phase Optimization Method (TPO) |
|
|
62 | (2) |
|
3.3.6 Multiphase Pre-Copy Strategy |
|
|
64 | (1) |
|
|
65 | (4) |
|
|
65 | (4) |
|
|
69 | (1) |
|
|
69 | (1) |
|
|
70 | (1) |
|
|
70 | (3) |
|
|
71 | (2) |
|
4 Estimation and Analysis of Prediction Rate of Pre-Trained Deep Learning Network in Classification of Brain Tumor MRI Images |
|
|
73 | (26) |
|
Krishnamoorthy Raghavan Narasu |
|
|
|
|
|
|
|
74 | (1) |
|
4.2 Classes of Brain Tumors |
|
|
75 | (1) |
|
|
76 | (2) |
|
|
78 | (15) |
|
|
93 | (6) |
|
|
95 | (4) |
|
5 An Intelligent Healthcare Monitoring System for Coma Patients |
|
|
99 | (22) |
|
|
|
|
|
|
|
100 | (2) |
|
|
102 | (2) |
|
5.3 Materials and Methods |
|
|
104 | (7) |
|
|
104 | (1) |
|
|
105 | (1) |
|
|
105 | (1) |
|
|
106 | (1) |
|
|
106 | (1) |
|
5.3.4.2 Temperature Sensor |
|
|
107 | (1) |
|
|
107 | (1) |
|
5.3.4.4 OpenCV (Open Source Computer Vision) |
|
|
108 | (1) |
|
|
108 | (1) |
|
|
109 | (1) |
|
|
109 | (1) |
|
|
109 | (1) |
|
5.3.4.9 USB to TTL Converter |
|
|
110 | (1) |
|
5.3.4.10 EEG of Comatose Patients |
|
|
110 | (1) |
|
5.4 Results and Discussion |
|
|
111 | (5) |
|
|
116 | (5) |
|
|
117 | (4) |
|
6 Deep Learning Interpretation of Biomedical Data |
|
|
121 | (22) |
|
|
|
|
|
122 | (3) |
|
|
125 | (7) |
|
6.2.1 Recurrent Neural Networks |
|
|
125 | (2) |
|
|
127 | (1) |
|
6.2.3 Convolutional Neural Networks |
|
|
128 | (2) |
|
6.2.4 Deep Belief Networks |
|
|
130 | (1) |
|
6.2.5 Deep Stacking Networks |
|
|
131 | (1) |
|
6.3 Interpretation of Deep Learning With Biomedical Data |
|
|
132 | (7) |
|
|
139 | (4) |
|
|
140 | (3) |
|
7 Evolution of Electronic Health Records |
|
|
143 | (18) |
|
|
|
|
|
|
|
143 | (1) |
|
7.2 Traditional Paper Method |
|
|
144 | (1) |
|
|
144 | (1) |
|
7.4 Telemedicine and IoMT |
|
|
145 | (2) |
|
7.4.1 Advantages of Telemedicine |
|
|
145 | (1) |
|
|
146 | (1) |
|
7.4.3 IoMT Advantages with Telemedicine |
|
|
146 | (1) |
|
7.4.4 Limitations of IoMT With Telemedicine |
|
|
147 | (1) |
|
|
147 | (1) |
|
7.6 Materials and Methods |
|
|
147 | (1) |
|
|
147 | (1) |
|
|
148 | (1) |
|
|
148 | (2) |
|
7.8 Applications of Electronic Health Records |
|
|
150 | (5) |
|
|
150 | (1) |
|
|
150 | (1) |
|
7.8.1.2 Data Significance and Evaluation |
|
|
151 | (1) |
|
|
151 | (1) |
|
7.8.2 Diagnosis and Monitoring |
|
|
151 | (1) |
|
|
151 | (1) |
|
|
152 | (1) |
|
|
152 | (1) |
|
7.8.3 Track Medical Progression |
|
|
153 | (1) |
|
|
153 | (1) |
|
|
153 | (1) |
|
|
154 | (1) |
|
|
154 | (1) |
|
|
154 | (1) |
|
|
155 | (1) |
|
|
155 | (1) |
|
7.9 Results and Discussion |
|
|
155 | (2) |
|
|
157 | (1) |
|
|
158 | (3) |
|
|
158 | (3) |
|
8 Architecture of IoMT in Healthcare |
|
|
161 | (12) |
|
A. Josephin Arockia Dhiyya |
|
|
|
161 | (4) |
|
|
162 | (1) |
|
|
162 | (1) |
|
8.1.3 Network Segment Layer |
|
|
163 | (1) |
|
|
163 | (1) |
|
8.1.5 In-Hospital Segment |
|
|
163 | (1) |
|
|
164 | (1) |
|
8.2 Preferences of the Internet of Things |
|
|
165 | (2) |
|
|
165 | (1) |
|
8.2.2 Proficiency and Efficiency |
|
|
165 | (1) |
|
|
165 | (1) |
|
|
166 | (1) |
|
8.2.5 Portability and Nimbleness |
|
|
166 | (1) |
|
8.3 IoMT Progress in COVID-19 Situations: Presentation |
|
|
167 | (4) |
|
8.3.1 The IoMT Environment |
|
|
168 | (1) |
|
8.3.2 IoMT Pandemic Alleviation Design |
|
|
169 | (1) |
|
8.3.3 Man-Made Consciousness and Large Information Innovation in IoMT |
|
|
170 | (1) |
|
8.4 Major Applications of IoMT |
|
|
171 | (2) |
|
|
172 | (1) |
|
9 Performance Assessment of IoMT Services and Protocols |
|
|
173 | (14) |
|
|
|
|
174 | (1) |
|
9.2 IoMT Architecture and Platform |
|
|
175 | (2) |
|
|
176 | (1) |
|
9.2.2 Devices Integration Layer |
|
|
177 | (1) |
|
|
177 | (6) |
|
9.3.1 Internet Protocol for Medical IoT Smart Devices |
|
|
177 | (1) |
|
|
178 | (1) |
|
9.3.1.2 Message Queue Telemetry Transport (MQTT) |
|
|
179 | (1) |
|
9.3.1.3 Constrained Application Protocol (CoAP) |
|
|
180 | (1) |
|
9.3.1.4 AMQP: Advanced Message Queuing Protocol (AMQP) |
|
|
181 | (1) |
|
9.3.1.5 Extensible Message and Presence Protocol (XMPP) |
|
|
181 | (2) |
|
|
183 | (1) |
|
9.4 Testing Process in IoMT |
|
|
183 | (2) |
|
9.5 Issues and Challenges |
|
|
185 | (1) |
|
|
185 | (2) |
|
|
185 | (2) |
|
10 Performance Evaluation of Wearable IoT-Enabled Mesh Network for Rural Health Monitoring |
|
|
187 | (20) |
|
|
|
|
188 | (2) |
|
10.2 Proposed System Framework |
|
|
190 | (10) |
|
10.2.1 System Description |
|
|
190 | (2) |
|
10.2.2 Health Monitoring Center |
|
|
192 | (1) |
|
|
192 | (1) |
|
10.2.2.2 Wireless Sensor Coordinator/Transceiver |
|
|
192 | (3) |
|
10.2.2.3 Ontology Information Center |
|
|
195 | (1) |
|
10.2.2.4 Mesh Backbone-Placement and Routing |
|
|
196 | (4) |
|
10.3 Experimental Evaluation |
|
|
200 | (1) |
|
10.4 Performance Evaluation |
|
|
201 | (3) |
|
10.4.1 Energy Consumption |
|
|
201 | (1) |
|
|
201 | (1) |
|
|
202 | (2) |
|
|
204 | (3) |
|
|
204 | (3) |
|
11 Management of Diabetes Mellitus (DM) for Children and Adults Based on Internet of Things (IoT) |
|
|
207 | (18) |
|
|
|
|
|
|
|
208 | (4) |
|
|
209 | (1) |
|
11.1.2 Management of Diabetes |
|
|
209 | (1) |
|
11.1.3 Blood Glucose Monitoring |
|
|
210 | (1) |
|
11.1.4 Continuous Glucose Monitors |
|
|
211 | (1) |
|
11.1.5 Minimally Invasive Glucose Monitors |
|
|
211 | (1) |
|
11.1.6 Non-Invasive Glucose Monitors |
|
|
211 | (1) |
|
|
211 | (1) |
|
11.2 Materials and Methods |
|
|
212 | (7) |
|
11.2.1 Artificial Neural Network |
|
|
212 | (1) |
|
|
213 | (1) |
|
11.2.3 Histogram Calculation |
|
|
213 | (1) |
|
11.2.4 IoT Cloud Computing |
|
|
214 | (1) |
|
|
215 | (1) |
|
|
215 | (1) |
|
|
215 | (1) |
|
|
216 | (1) |
|
|
216 | (1) |
|
|
217 | (1) |
|
|
218 | (1) |
|
11.2.12 LM35 Temperature Sensors |
|
|
218 | (1) |
|
11.3 Results and Discussion |
|
|
219 | (3) |
|
|
222 | (1) |
|
|
222 | (3) |
|
|
223 | (2) |
|
12 Wearable Health Monitoring Systems Using IoMT |
|
|
225 | (22) |
|
|
A. Josephin Arockia Dhivya |
|
|
|
225 | (1) |
|
12.2 IoMT in Developing Wearable Health Surveillance System |
|
|
226 | (3) |
|
12.2.1 A Wearable Health Monitoring System with Multi-Parameters |
|
|
227 | (1) |
|
12.2.2 Wearable Input Device for Smart Glasses Based on a Wristband-Type Motion-Aware Touch Panel |
|
|
228 | (1) |
|
12.2.3 Smart Belt: A Wearable Device for Managing Abdominal Obesity |
|
|
228 | (1) |
|
12.2.4 Smart Bracelets: Automating the Personal Safety Using Wearable Smart Jewelry |
|
|
228 | (1) |
|
12.3 Vital Parameters That Can Be Monitored Using Wearable Devices |
|
|
229 | (11) |
|
|
230 | (1) |
|
|
231 | (1) |
|
|
232 | (1) |
|
|
232 | (2) |
|
12.3.5 Blood Oxygen Saturation |
|
|
234 | (1) |
|
|
235 | (1) |
|
|
236 | (2) |
|
|
238 | (1) |
|
|
239 | (1) |
|
12.4 Challenges Faced in Customizing Wearable Devices |
|
|
240 | (3) |
|
|
240 | (1) |
|
|
240 | (1) |
|
12.4.3 Availability of Resources |
|
|
241 | (1) |
|
|
241 | (1) |
|
12.4.5 Modeling the Relationship Between Acquired Measurement and Diseases |
|
|
242 | (1) |
|
12.4.6 Real-Time Processing |
|
|
242 | (1) |
|
12.4.7 Intelligence in Medical Care |
|
|
242 | (1) |
|
|
243 | (4) |
|
|
244 | (3) |
|
13 Future of Healthcare: Biomedical Big Data Analysis and IoMT |
|
|
247 | (22) |
|
|
|
|
248 | (2) |
|
13.2 Big Data and IoT in Healthcare Industry |
|
|
250 | (1) |
|
13.3 Biomedical Big Data Types |
|
|
251 | (3) |
|
13.3.1 Electronic Health Records |
|
|
252 | (1) |
|
13.3.2 Administrative and Claims Data |
|
|
252 | (1) |
|
13.3.3 International Patient Disease Registries |
|
|
252 | (1) |
|
13.3.4 National Health Surveys |
|
|
253 | (1) |
|
13.3.5 Clinical Research and Trials Data |
|
|
254 | (1) |
|
13.4 Biomedical Data Acquisition Using IoT |
|
|
254 | (2) |
|
13.4.1 Wearable Sensor Suit |
|
|
254 | (1) |
|
|
255 | (1) |
|
|
255 | (1) |
|
13.5 Biomedical Data Management Using IoT |
|
|
256 | (6) |
|
13.5.1 Apache Spark Framework |
|
|
257 | (1) |
|
|
258 | (1) |
|
|
258 | (1) |
|
13.5.4 Clustering Algorithms |
|
|
259 | (1) |
|
13.5.5 K-Means Clustering |
|
|
259 | (1) |
|
13.5.6 Fuzzy C-Means Clustering |
|
|
260 | (1) |
|
|
261 | (1) |
|
13.6 Impact of Big Data and IoMT in Healthcare |
|
|
262 | (1) |
|
13.7 Discussions and Conclusions |
|
|
263 | (6) |
|
|
264 | (5) |
|
14 Medical Data Security Using Blockchain With Soft Computing Techniques: A Review |
|
|
269 | (20) |
|
|
|
|
|
270 | (2) |
|
|
272 | (5) |
|
14.2.1 Blockchain Architecture |
|
|
272 | (1) |
|
14.2.2 Types of Blockchain Architecture |
|
|
273 | (1) |
|
14.2.3 Blockchain Applications |
|
|
274 | (2) |
|
14.2.4 General Applications of the Blockchain |
|
|
276 | (1) |
|
14.3 Blockchain as a Decentralized Security Framework |
|
|
277 | (4) |
|
14.3.1 Characteristics of Blockchain |
|
|
278 | (2) |
|
14.3.2 Limitations of Blockchain Technology |
|
|
280 | (1) |
|
14.4 Existing Healthcare Data Predictive Analytics Using Soft Computing Techniques in Data Science |
|
|
281 | (1) |
|
14.4.1 Data Science in Healthcare |
|
|
281 | (1) |
|
14.5 Literature Review: Medical Data Security in Cloud Storage |
|
|
281 | (5) |
|
|
286 | (3) |
|
|
287 | (2) |
|
15 Electronic Health Records: A Transitional View |
|
|
289 | (12) |
|
|
|
289 | (1) |
|
15.2 Ancient Medical Record, 1600 BC |
|
|
290 | (1) |
|
15.3 Greek Medical Record |
|
|
291 | (1) |
|
15.4 Islamic Medical Record |
|
|
291 | (1) |
|
15.5 European Civilization |
|
|
292 | (1) |
|
15.6 Swedish Health Record System |
|
|
292 | (1) |
|
15.7 French and German Contributions |
|
|
293 | (1) |
|
15.8 American Descriptions |
|
|
293 | (4) |
|
15.9 Beginning of Electronic Health Recording |
|
|
297 | (1) |
|
|
298 | (3) |
|
|
298 | (3) |
Index |
|
301 | |