Muutke küpsiste eelistusi

E-raamat: Interrupted Time Series Analysis

(Professor of Criminology, Law, and Society and Planning, Policy and Design, University of California, Irvine), (Ph.D. ), (Distinguished Teaching Professor, School of Criminal Justice, University at Albany, State University of New York)
  • Formaat: 240 pages
  • Ilmumisaeg: 16-Sep-2019
  • Kirjastus: Oxford University Press Inc
  • Keel: eng
  • ISBN-13: 9780190943974
  • Formaat - EPUB+DRM
  • Hind: 27,29 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 240 pages
  • Ilmumisaeg: 16-Sep-2019
  • Kirjastus: Oxford University Press Inc
  • Keel: eng
  • ISBN-13: 9780190943974

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Interrupted Time Series Analysis develops a comprehensive set of models and methods for drawing causal inferences from time series. It provides example analyses of social, behavioral, and biomedical time series to illustrate a general strategy for building AutoRegressive Integrated Moving Average (ARIMA) impact models. Additionally, the book supplements the classic Box-Jenkins-Tiao model-building strategy with recent auxiliary tests for transformation, differencing, and model selection. Not only does the text discuss new developments, including the prospects for widespread adoption of Bayesian hypothesis testing and synthetic control group designs, but it makes optimal use of graphical illustrations in its examples. With forty completed example analyses that demonstrate the implications of model properties, Interrupted Time Series Analysis will be a key inter-disciplinary text in classrooms, workshops, and short-courses for researchers familiar with time series data or cross-sectional regression analysis but limited background in the structure of time series processes and experiments.
List of Figures
xi
List of Tables
xv
Acknowledgments xvii
1 Introduction to ITSA
1(5)
1.1 An Outline
6(3)
1.2 A Short Note on Software
9(2)
2 Arima Algebra
11(3)
2.1 White Noise Processes
14(2)
2.2 AR1 and Ma1 Processes
16(6)
2.3 Ar and Ma "Memory"
22(2)
2.4 Higher-Order and Mixed Processes
24(5)
2.5 Invertibility and Stationarity
29(7)
2.6 Integrated Processes
36(4)
2.7 Stationarity Revisited
40(3)
2.8 Seasonal Models
43(3)
2.9 Conclusion
46(2)
3 The Noise Component: N(at)
48(5)
3.1 White Noise
53(3)
3.2 The Normality Assumption: A Digression
56(3)
3.3 Ar1 and Mai Time Series
59(8)
3.3.1 Canadian Inflation
59(4)
3.3.2 U.K. GDP Growth
63(2)
3.3.3 Pediatric Trauma Admissions
65(2)
3.4 Higher-Orderarma Processes
67(10)
3.4.1 Beveridge's Wheat Price Time Series
67(7)
3.4.2 Zurich Sunspot Numbers
74(3)
3.5 Integrated Models
77(7)
3.5.1 Kroeber's Skirt-Width Time Series
78(3)
3.5.2 Annual U.S. Tuberculosis Cases
81(3)
3.6 Seasonal Models
84(10)
3.6.1 Anchorage Monthly Precipitation
84(3)
3.6.2 Monthly Atmospheric CO2
87(3)
3.6.3 Australian Traffic Fatalities
90(4)
3.7 Conclusion
94(4)
4 The Intervention Component: X(It)
98(2)
4.1 Abrupt, Permanent Impacts
100(1)
4.1.1 Rest Breaks and Productivity
101(2)
4.1.2 Prophylactic Vancomycin and Surgical Infection
103(2)
4.1.3 New Hampshire Medicaid Prescriptions
105(3)
4.1.4 Methadone Maintenance Treatments
108(4)
4.2 Gradually Accruing Impacts
112(10)
4.2.1 Australian Traffic Fatalities
112(4)
4.2.2 British Traffic Fatalities
116(4)
4.2.3 "Talking Out" Incidents
120(2)
4.3 DECAYING IMPACTS
122(6)
4.3.1 Self-Injurious Behavior
125(3)
4.4 Complex Impacts
128(4)
4.4.1 Decriminalization of Public Drunkenness
129(3)
4.5 Conclusion
132(4)
5 Auxiliary Modeling Procedures
136(1)
5.1 Information Criteria
137(7)
5.2 Unit Root Tests
144(6)
5.3 Co-Integrated Time Series
150(2)
5.4 Conclusion
152(2)
6 Into the Future
154(1)
6.1 Bayesian Hypothesis Testing
155(6)
6.2 Synthetic Control Designs
161(8)
6.3 Conclusion
169(2)
References 171(6)
Index 177
David McDowall is Distinguished Teaching Professor at the University at Albany, State University of New York. He serves on the faculty of Albany's School of Criminal Justice, where he also co-directs the Violence Research Group. His research interests involve the social distribution of criminal violence, including trends and other temporal features in crime rates.

Richard McCleary is a professor at the University of California, Irvine. In addition to faculty appointments in Criminology, Law and Society, Environmental Health Sciences, and Planning, Policy and Design, he directs the Irvine Simulation Modeling Laboratory. His research interests include population forecast models, time series models, and survival models.

Bradley J. Bartos is a doctoral candidate in the Department of Criminology, Law and Society at the University of California, Irvine. Through his work with the Irvine Simulation Modeling Laboratory, he has developed discrete-event population projection models for

various criminal-justice and corrections systems in California. His research interests include mass incarceration, policy evaluation, time series models, and synthetic control group designs.