Muutke küpsiste eelistusi

E-raamat: Interval Finite Element Method with MATLAB

(Assistant Professor, Department of Mathematics, Amrita School of Engineering, Coimbatore, India),
  • Formaat: PDF+DRM
  • Ilmumisaeg: 23-Jan-2018
  • Kirjastus: Academic Press Inc
  • Keel: eng
  • ISBN-13: 9780128129746
  • Formaat - PDF+DRM
  • Hind: 162,44 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 23-Jan-2018
  • Kirjastus: Academic Press Inc
  • Keel: eng
  • ISBN-13: 9780128129746

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Interval Finite Element Method with MATLAB provides a thorough introduction to an effective way of investigating problems involving uncertainty using computational modeling. The well-known and versatile Finite Element Method (FEM) is combined with the concept of interval uncertainties to develop the Interval Finite Element Method (IFEM). An interval or stochastic environment in parameters and variables is used in place of crisp ones to make the governing equations interval, thereby allowing modeling of the problem. The concept of interval uncertainties is systematically explained. Several examples are explored with IFEM using MATLAB on topics like spring mass, bar, truss and frame.

  • Provides a systematic approach to understanding the interval uncertainties caused by vague or imprecise data
  • Describes the interval finite element method in detail
  • Gives step-by-step instructions for how to use MATLAB code for IFEM
  • Provides a range of examples of IFEM in use, with accompanying MATLAB codes
Author Biographies vii
Preface ix
Acknowledgments xiii
1 Interval Arithematic
1(6)
1.1 Truncation Error
2(1)
1.2 Round-Off Error
2(1)
1.3 Degenerate Intervals
3(1)
1.4 Intersection, Union, and Interval Hull
3(1)
1.5 Width, Absolute Value, Midpoint
3(1)
1.6 Interval Arithmetic
4(3)
References
5(2)
2 Interval Finite Element Method
7(12)
2.1 A Brief Overview
7(2)
2.2 Finite Element Method (FEM)
9(1)
2.3 Hybridization of Interval and Finite Element Method
10(9)
References
16(3)
3 Preliminaries of MATLAB®
19(16)
3.1 Beginning With MATLAB®
19(1)
3.2 Matrices, Operations, and Basic MATLAB® Functions
19(3)
3.3 M-Files, Logical-Relational Operators, and IF Statements
22(1)
3.4 Functions in MATLAB®
23(1)
3.5 FOR and WHILE Loops in MATLAB®
23(2)
3.6 Graphics in MATLAB®
25(1)
3.7 Efficiency of Algorithms in MATLAB®
26(1)
3.8 Useful Functions and Commands in MATLAB®
26(9)
References
33(2)
4 One-Dimensional Interval Finite Element
35(12)
4.1 Spring Element
36(4)
4.2 Linear Bar Element
40(3)
4.3 Quadratic Bar Element
43(4)
References
45(2)
5 MATLAB® Code for One-Dimensional Interval Finite Element
47(16)
5.1 MATLAB® Code for Spring Element
47(4)
5.2 MATLAB® Code for Linear Bar Element
51(4)
5.3 MATLAB® Code for Quadratic Bar Element
55(8)
References
61(2)
6 Two-Dimensional Interval Finite Element
63(16)
6.1 Plane Truss Element
63(5)
6.2 Beam Element
68(3)
6.3 Plane Frame Element
71(5)
6.4 Linear Triangular Element
76(3)
References
78(1)
7 MATLAB® Code for Two-Dimensional Interval Finite Element
79(26)
7.1 MATLAB Code for Plane Truss Element
79(7)
7.2 MATLAB® Code for Beam Element
86(4)
7.3 MATLAB® Code for Plane Frame Element
90(7)
7.4 MATLAB® Code for Linear Triangular Element
97(8)
References
104(1)
8 Three-Dimensional Interval Finite Element
105(14)
8.1 Space Truss Element
105(4)
8.2 Space Frame Element
109(5)
8.3 Linear Tetrahedral Element
114(5)
References
118(1)
9 MATLAB® Code for Three-Dimensional Interval Finite Element
119(32)
9.1 MATLAB® Code for Space Truss Element
119(7)
9.2 MATLAB® Code for Space Frame Element
126(12)
9.3 MATLAB® Code for Linear Tetrahedral Element
138(13)
References
150(1)
Index 151
Dr Sukanta Nayak is Assistant Professor in the Department of Mathematics, at the Amrita School of Engineering in Coimbatore, India. He previously held a postdoctoral research fellowship at the University of Johannesburg, South Africa, and received his Ph.D. in mathematics from the National Institute of Technology Rourkela, in India. His research interests include numerical analysis, linear algebra, fuzzy finite element method, fuzzy heat, neutron diffusion equations, fuzzy stochastic differential equations and wavelet analysis. He has published widely in the field, including as co-author of a book entitled Interval Finite Element Method with MATLAB, for Elseviers Academic Press (2018). Dr. Snehashish Chakraverty is a Senior Professor in the Department of Mathematics (Applied Mathematics Group), National Institute of Technology Rourkela, with over 30 years of teaching and research experience. A gold medalist from the University of Roorkee (now IIT Roorkee), he earned his Ph.D. from IIT Roorkee and completed post-doctoral work at the University of Southampton (UK) and Concordia University (Canada). He has also served as a visiting professor in Canada and South Africa. Dr. Chakraverty has authored/edited 38 books and published over 495 research papers. His research spans differential equations (ordinary, partial, fractional), numerical and computational methods, structural and fluid dynamics, uncertainty modeling, and soft computing techniques. He has guided 27 Ph.D. scholars, with 10 currently under his supervision.

He has led 16 funded research projects and hosted international researchers through prestigious fellowships. Recognized in the top 2% of scientists globally (Stanford-Elsevier list, 20202024), he has received numerous awards including the CSIR Young Scientist Award, BOYSCAST Fellowship, INSA Bilateral Exchange, and IOP Top Cited Paper Awards. He is Chief Editor of International Journal of Fuzzy Computation and Modelling and serves on several international editorial boards.