Muutke küpsiste eelistusi

E-raamat: Introduction to Accelerator Dynamics

, (Brookhaven National Laboratory, New York)
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 07-Aug-2017
  • Kirjastus: Cambridge University Press
  • Keel: eng
  • ISBN-13: 9781108293006
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 92,61 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 07-Aug-2017
  • Kirjastus: Cambridge University Press
  • Keel: eng
  • ISBN-13: 9781108293006
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This introductory text presents a detailed account of the field of accelerator physics, including particle acceleration, collision and beam dynamics, and the important engineering considerations inherent in the effective construction and operation of particle accelerators. It is appropriate for advanced undergraduate and graduate students, accelerator scientists, and engineers.

How does a particle accelerator work? The most direct and intuitive answer focuses on the dynamics of single particles as they travel through an accelerator. Particle accelerators are becoming ever more sophisticated and diverse, from the Large Hadron Collider (LHC) at CERN to multi-MW linear accelerators and small medical synchrotrons. This self-contained book presents a pedagogical account of the important field of accelerator physics, which has grown rapidly since its inception in the latter half of the last century. Key topics covered include the physics of particle acceleration, collision and beam dynamics, and the engineering considerations intrinsic to the effective construction and operation of particle accelerators. By drawing direct connections between accelerator technology and the parallel development of computational capability, this book offers an accessible introduction to this exciting field at a level appropriate for advanced undergraduate and graduate students, accelerator scientists, and engineers.

Muu info

An introductory text covering the important field of accelerator physics, including collision and beam dynamics, and engineering considerations for particle accelerators.
Preface xi
1 Introduction
1(12)
1.1 Differences or Differentials?
1(2)
1.2 Phase Space Co-ordinates
3(2)
1.3 Iterations, Ancient and Modern
5(1)
1.4 Accelerator History: The Two Golden Ages
6(7)
Exercises
10(3)
2 Linear Motion
13(11)
2.1 Stable Oscillations
13(3)
2.2 Transverse Motion through Magnets
16(3)
2.3 Matrix Equations of Motion
19(5)
Exercises
22(2)
3 Strong Focusing Transverse Optics
24(13)
3.1 Linear Stability and Twiss Functions
25(2)
3.2 Turn-by-Turn Motion in Phase Space
27(2)
3.3 Propagation across a Fraction of a Turn
29(1)
3.4 Continuous Propagation
30(2)
3.5 FODO Cell Optics
32(5)
Exercises
35(2)
4 Longitudinal and Off-Momentum Motion
37(13)
4.1 Constant Momentum Offset: Transverse Motion
37(2)
4.2 The Dispersion Function
39(2)
4.3 Oscillating Momentum: Longitudinal Motion
41(4)
4.4 The Standard Map
45(5)
Exercises
48(2)
5 Action and Emittance --- One Particle or Many?
50(13)
5.1 Transverse Action-Angle Co-ordinates
50(2)
5.2 Unnormalised Emittances and Beam Sizes
52(2)
5.3 Tune Spread and Filamentation
54(2)
5.4 Linac (Phase Space Area) Emittances
56(2)
5.5 Normalised Emittance and Adiabatic Damping
58(2)
5.6 Longitudinal Phase Space Parameters
60(3)
Exercises
61(2)
6 Magnets
63(10)
6.1 Normal and Skew Multipole Magnets
63(2)
6.2 Iron-Dominated Magnets
65(1)
6.3 Conductor-Dominated Magnets
66(1)
6.4 Field Quality and Errors
67(6)
Exercises
69(4)
7 RF Cavities
73(10)
7.1 Waveguides
73(1)
7.2 Transverse Modes
74(2)
7.3 Cylindrical Resonant Cavities --- Pill-Boxes
76(3)
7.4 Cavity Performance Limits
79(4)
Exercises
81(2)
8 Linear Errors and Their Correction
83(11)
8.1 Trajectory and Closed Orbit Errors
83(5)
8.2 Linear Coupling
88(1)
8.3 Tune Shifts and L-Waves
89(5)
Exercises
92(2)
9 Sextupoles, Chromaticity and the Henon Map
94(13)
9.1 Chromaticity in a FODO Lattice
94(2)
9.2 Chromaticity Correction
96(2)
9.3 The Henon Map --- A Unit Strength Sextupole in 1-D
98(2)
9.4 A Taxonomy of 1-D Motion
100(3)
9.5 Dynamic Aperture
103(4)
Exercises
104(3)
10 Octupoles, Detuning and Slow Extraction
107(9)
10.1 Single Octupole Lattice
107(2)
10.2 Discrete Motion in Action-Angle Space, (J, φ)
109(1)
10.3 Two-Turn Motion with Q ~ 1/2
110(1)
10.4 Slow Extraction near the Half-Integer
111(5)
Exercises
113(3)
11 Synchrotron Radiation --- Classical Damping
116(15)
11.1 Spectrum and Distribution Pattern
116(3)
11.2 Energy Loss Per Turn and Longitudinal Damping
119(5)
11.3 Continuous Acceleration
124(2)
11.4 Transverse Damping and Partition Numbers
126(5)
Exercises
128(3)
12 Synchrotron Radiation --- Quantum Excitation
131(10)
12.1 Energy Spread
132(2)
12.2 Horizontal Emittance
134(4)
12.3 Vertical Emittance
138(3)
Exercises
139(2)
13 Linacs --- Protons and Ions
141(18)
13.1 Time Structures
142(3)
13.2 Multi-Cell Synchronism
145(2)
13.3 Linear Motion
147(6)
13.4 Radio Frequency Quadrupoles
153(4)
13.5 Beam Losses and Haloes
157(2)
Exercises
158(1)
14 Linacs --- Electrons
159(11)
14.1 Longitudinal and Transverse Focusing
159(2)
14.2 RF Capture
161(1)
14.3 Bunch Compression
162(2)
14.4 Recirculating and Energy Recovery Linacs
164(2)
14.5 Beam Breakup
166(4)
Exercises
169(1)
15 The Beam-Beam Interaction and 1-D Resonances
170(11)
15.1 Round Beam-Beam Interaction
170(4)
15.2 First-Order Theory of 1-D Resonances
174(2)
15.3 Resonance Island Tunes and Widths
176(5)
Exercises
180(1)
16 Routes to Chaos
181(10)
16.1 Resonance Overlap
182(2)
16.2 Tune Modulation
184(3)
16.3 Dynamical Zones in Tune Modulation Space
187(4)
Exercises
190(1)
Appendix A Selected Formulae for Accelerator Design
191(7)
A.1 Matrices for Linear Motion through Accelerator Elements
191(5)
A.2 Propagation of Twiss Functions
196(2)
References 198(3)
Index 201
Stephen Peggs is a Senior Scientist at Brookhaven National Laboratory, New York, and an Adjunct Professor of Physics at the State University of New York, Stony Brook, where he was closely involved in building and commissioning the Relativistic Heavy Ion Collider (RHIC). He has worked internationally on a variety of accelerators, including the Cornell Electron Storage Ring, the Super Proton Synchotron collider at CERN, the Superconducting Super Collider in Texas, the Tevatron and the Main Injector at Fermilab, and the European Spallation Source in Sweden. He is a Fellow of the American Physical Society. Todd Satogata is a Senior Physicist at the Center for Advanced Studies of Accelerators at the Thomas Jefferson National Accelerator Facility (Jefferson Lab) and a Jefferson Lab Professor at the Centre for Accelerator Science at Old Dominion University, Virginia. During his career he has worked on the commissioning, design, building, and operation of the Relativistic Heavy Ion Collider at the Brookhaven National Laboratory, New York, and commissioning and operation of the 12 GeV CEBAF upgrade at Jefferson Lab, in addition to developing medical accelerators, proton beam imaging techniques, and accelerator control systems.