Muutke küpsiste eelistusi

E-raamat: Introduction to Adaptive Lenses

, (HRL Laboratories, Malibu, California)
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 130,85 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Presents readers with the basic science, technology, and applications for every type of adaptive lens

An adaptive lens is a lens whose shape has been changed to a different focal length by an external stimulus such as pressure, electric field, magnetic field, or temperature. Introduction to Adaptive Lenses is the first book ever to address all of the fundamental operation principles, device characteristics, and potential applications of various types of adaptive lenses.

This comprehensive book covers basic material properties, device structures and performance, image processing and zooming, optical communications, and biomedical imaging. Readers will find homework problems and solutions included at the end of each chapterand based on the described device structures, they will have the knowledge to fabricate adaptive lenses for practical applications or develop new adaptive devices or concepts for advanced investigation.

Introduction to Adaptive Lenses includes chapters on:





Optical lenses



Elastomeric membrane lenses



Electro-wetting lenses



Dielectrophoretic lenses



Mechanical-wetting lenses



Liquid crystal lenses





This is an important reference for optical engineers, research scientists, graduate students, and undergraduate seniors.

Arvustused

The description of each is very thorough and well-referenced. Ren and Wu have made liberal use of diagrams and images, making the book easy to understand. Readers will find it stimulating and informative.  (Optics & Photonics News, 1 February 2013)





 

Preface ix
1 Optical Lens
1(22)
1.1 Introduction
1(2)
1.2 Conventional Lens
3(4)
1.2.1 Refraction of Light
3(1)
1.2.2 A Simple Lens
4(2)
1.2.3 A Compound Lens
6(1)
1.3 Aberration and Resolution
7(8)
1.3.1 Paraxial Optics
7(2)
1.3.2 Aberration
9(4)
1.3.3 Resolution
13(2)
1.4 Merits and Demerits of Solid Lens
15(1)
1.5 Adaptive Optical Lenses
16(5)
1.5.1 Eye Structure
16(1)
1.5.2 Lens Character
17(1)
1.5.3 Performances
18(1)
1.5.4 The Eye-Inspired Lens
19(2)
1.6 Homework Problems
21(2)
References
21(2)
2 Elastomeric Membrane Lens
23(57)
2.1 Polydimethylsiloxane (PDMS) Membrane
23(4)
2.1.1 PDMS Chemical Structure
24(1)
2.1.2 Basic Material Properties
24(1)
2.1.3 Optical Transmission
24(1)
2.1.4 Fabrication of PDMS Membrane
25(2)
2.2 Device Structure
27(12)
2.2.1 Requirements of the Liquid
28(1)
2.2.2 Surface Configuration
29(5)
2.2.3 PDMS Lens Cell Fabrication
34(2)
2.2.4 Performance Evaluation Method
36(3)
2.3 Actuators
39(26)
2.3.1 Syringe Pump
39(1)
2.3.2 Motor Pumps
40(10)
2.3.3 Piezoelectric Linear Actuator
50(10)
2.3.4 Artificial Muscles
60(3)
2.3.5 Voice Coil Actuator (VCA)
63(1)
2.3.6 Other Liquid Lenses
64(1)
2.4 PDMS Microlens Array
65(5)
2.4.1 Device Configuration
65(1)
2.4.2 Fabrication Method
66(1)
2.4.3 Performance Evaluation
67(3)
2.5 Solid PDMS Lenses
70(3)
2.5.1 Squeezing the Lens's Border
70(2)
2.5.2 Elongating the Lens's Diameter
72(1)
2.6 Hybrid Lens System
73(1)
2.7 Summary and Technical Challenges
74(1)
2.8 Homework Problems
75(5)
References
76(4)
3 Electrowetting Lens
80(27)
3.1 Introduction
80(1)
3.2 Surface Tension
81(3)
3.3 Contact Angle and Wetting
84(2)
3.4 Basic Theory of Electrowetting
86(2)
3.5 Droplet Deformation
88(2)
3.6 Electrowetting Lens
90(1)
3.6.1 Shape of Droplet Surface
90(1)
3.6.2 Focal Length Equation
90(1)
3.7 Tunable Electrowetting Lens
91(2)
3.8 Desired Properties of the Liquids
93(1)
3.9 Singlet Lens with Two Liquids
93(4)
3.9.1 Lens Cell 1
94(2)
3.9.2 Lens Cell 2
96(1)
3.10 Microlens Array
97(5)
3.11 Remaining Challenges
102(1)
3.12 Summary
103(1)
3.13 Homework Problems
103(4)
References
104(3)
4 Dielectrophoretic Lens
107(52)
4.1 Introduction
107(1)
4.2 Dielectrophoretic Force
108(4)
4.3 Dielectric Liquid Materials
112(1)
4.4 Singlet Lens
112(18)
4.4.1 Continuous Flat Electrodes
112(5)
4.4.2 Hole Patterned Electrode
117(5)
4.4.3 Well-Shaped Electrode
122(5)
4.4.4 Fringing Field
127(3)
4.5 Microlens Array
130(7)
4.6 Switchable Lens
137(11)
4.6.1 Operation Principle
138(2)
4.6.2 Beam Diffuser
140(1)
4.6.3 Light Shutter
141(3)
4.6.4 Display
144(1)
4.6.5 Noncontact Electro-optic Inspection
144(4)
4.7 Gravity Effect
148(5)
4.7.1 Measurement Method
148(1)
4.7.2 Operation Principles
149(1)
4.7.3 Experimental Results
150(3)
4.8 Applications
153(1)
4.9 Summary
154(1)
4.10 Homework Problems
154(5)
References
155(4)
5 Other Adaptive Liquid Lenses
159(30)
5.1 Introduction
159(1)
5.2 Mechanical-Wetting Lens
159(6)
5.2.1 Out-of-Plane Tuning
159(3)
5.2.2 Hydrodynamic Liquid-Air In-Plane Tuning
162(1)
5.2.3 Hydrodynamic Liquid-Liquid In-Plane Tuning
163(2)
5.3 Ferrofluidic Transducer Lens
165(8)
5.3.1 Ferrofluidic Material
166(1)
5.3.2 First Example
166(3)
5.3.3 Second Example
169(2)
5.3.4 Third Example
171(2)
5.4 Electromagnetic Actuator Lens
173(2)
5.5 Stimuli Response Hydrogel Lens
175(2)
5.6 Acoustic Liquid Lens
177(4)
5.6.1 Acoustic Radiation Force
178(1)
5.6.2 Structure of an Acoustic Lens
178(2)
5.6.3 Lens Performance
180(1)
5.7 Electrochemical Actuation Lens
181(2)
5.8 Electrostatic Force Actuation
183(1)
5.9 Summary
184(1)
5.10 Homework Problems
185(4)
References
186(3)
6 Liquid Crystal Lens
189(82)
6.1 Introduction
189(1)
6.2 Physical Properties
190(6)
6.2.1 Phase Transitions and Order Parameter
190(2)
6.2.2 Rod-like Structure
192(1)
6.2.3 Dipole Moment
192(1)
6.2.4 Optical Anisotropy
193(2)
6.2.5 Dielectric Anisotropy
195(1)
6.3 LC Device
196(3)
6.3.1 Device Fabrication
196(1)
6.3.2 Optical Path Difference (OPD)
197(2)
6.4 Focal Length Equation
199(2)
6.5 Curved Electrode
201(13)
6.5.1 Curved Electrode and Nonuniform Cell Gap
201(1)
6.5.2 Curved Electrode and Planar Cell Gap
202(12)
6.6 Strip-Patterned Electrode
214(2)
6.7 Hole-Patterned Electrode
216(9)
6.7.1 Hole Pattern Inside the Lens Cell
216(3)
6.7.2 Hole Pattern Outside the Lens Cell
219(4)
6.7.3 Magnification of LC Lens System
223(2)
6.8 Modal Addressing
225(4)
6.9 Cylindrical LC Lens
229(5)
6.10 Polymer-LC Composite Lens
234(14)
6.10.1 Anisotropic Phase Separation
234(3)
6.10.2 Polymer-Dispersed Liquid Crystal
237(6)
6.10.3 Polymer Network Liquid Crystal (PNLC)
243(3)
6.10.4 Blue Phase Liquid Crystal Lens
246(2)
6.11 Diffractive LC Lens
248(5)
6.12 LC Microlens Array
253(8)
6.12.1 Lenticular Microlens Array
253(2)
6.12.2 Microlens Array with Curved Electrode
255(2)
6.12.3 Polymer-Stabilized LC Microlens Array
257(4)
6.13 Summary
261(3)
6.14 Homework Problems
264(7)
References
265(6)
Index 271
HONGWEN REN, PHD, is an associate professor in the Department of Polymer-Nano Science Technology at Chonbuk National University in South Korea. A former research scientist??at the University of Central Florida's College of Optics and Photonics, Dr. Ren has published over fifty journal papers, one book chapter, and obtained eight U.S. patents.

SHIN-TSON WU, PHD, is a Pegasus Professor at CREOL, the College of Optics and Photonics, University of Central Florida. He is a recipient of the 2011 SID Slottow-Owaki Prize, 2010 OSA Joseph Fraunhofer Award/Robert M. Burley Prize, 2008 SPIE G. G. Stokes Award, and 2008 SID Jan Rajchman Prize. He is a Fellow of the IEEE, OSA, SID, and SPIE. Dr. Wu has coauthored six books and over 400 journal papers, and holds over seventy issued U.S. patents. He was also the founding editor-in-chief of the IEEE/OSA Journal of Display Technology.