List of Tables |
|
xii | |
List of Figures |
|
xiv | |
Preface |
|
xix | |
Glossary of Notation |
|
xxv | |
I Probability Functions, Probability Density Functions, and Their Cumulative Counterparts |
|
1 | (186) |
|
1 Discrete Probability and Cumulative Probability Functions |
|
|
3 | (46) |
|
|
3 | (2) |
|
1.2 Parametric Probability Function Estimation |
|
|
5 | (3) |
|
1.3 Nonsmooth Probability Function Estimation |
|
|
8 | (3) |
|
1.4 Smooth Kernel Probability Function Estimation |
|
|
11 | (11) |
|
1.4.1 Estimator Properties for Unordered Categorical Variables and Kernels |
|
|
12 | (4) |
|
1.4.2 The SMSE-Optimal Smoothing Parameter and Rate of Convergence |
|
|
16 | (2) |
|
1.4.3 Asymptotic Normality |
|
|
18 | (1) |
|
1.4.4 Kernel Estimation and Shrinkage |
|
|
18 | (1) |
|
1.4.5 Estimator Properties for Ordered Categorical Variables and Kernels |
|
|
19 | (3) |
|
1.5 Nonsmooth Cumulative Probability Function Estimation |
|
|
22 | (3) |
|
1.6 Smooth Kernel Cumulative Probability Function Estimation |
|
|
25 | (2) |
|
1.7 The Multivariate Extension |
|
|
27 | (2) |
|
1.8 Practitioner's Corner |
|
|
29 | (16) |
|
1.8.1 Estimating Probability Functions in R |
|
|
29 | (5) |
|
1.8.2 A Monte Carlo Comparison of Probability Estimators |
|
|
34 | (11) |
|
|
45 | (4) |
|
2 Continuous Density and Cumulative Distribution Functions |
|
|
49 | (82) |
|
|
49 | (1) |
|
2.2 Parametric Density Function Estimation |
|
|
50 | (1) |
|
2.3 Nonsmooth Density Function Estimation |
|
|
51 | (5) |
|
2.3.1 The Histogram Density Estimator |
|
|
51 | (1) |
|
2.3.2 The Naive Density Estimator |
|
|
52 | (4) |
|
2.4 Smooth Kernel Density Function Estimation |
|
|
56 | (21) |
|
2.4.1 Properties of the Rosenblatt-Parzen Kernel Density Estimator |
|
|
58 | (8) |
|
2.4.2 The IMSE-Optimal Bandwidth and Rate of Convergence |
|
|
66 | (1) |
|
2.4.3 The IMSE-Optimal Kernel Function |
|
|
67 | (2) |
|
2.4.4 Asymptotic Normality |
|
|
69 | (2) |
|
2.4.5 Bandwidth Selection |
|
|
71 | (4) |
|
2.4.6 Bias-Reducing Kernel Functions |
|
|
75 | (2) |
|
2.5 Smooth Kernel Cumulative Distribution Function Estimation |
|
|
77 | (5) |
|
2.5.1 Properties of the Kernel Cumulative Distribution Function Estimator |
|
|
77 | (3) |
|
2.5.2 IMSE-Optimal Bandwidth |
|
|
80 | (1) |
|
2.5.3 Asymptotic Normality |
|
|
81 | (1) |
|
2.5.4 Bandwidth Selection |
|
|
81 | (1) |
|
2.6 Smooth Kernel Quantile Function Estimation |
|
|
82 | (3) |
|
2.7 The Multivariate Extension |
|
|
85 | (4) |
|
2.7.1 Properties of the Multivariate Kernel Density Estimator |
|
|
87 | (1) |
|
2.7.2 Properties of the Multivariate Kernel Cumulative Distribution Function Estimator |
|
|
88 | (1) |
|
2.8 Entropy and Information Measures |
|
|
89 | (8) |
|
2.8.1 Statistical Mechanics and Information Functions |
|
|
89 | (2) |
|
|
91 | (2) |
|
2.8.3 Joint and Conditional Entropy |
|
|
93 | (1) |
|
|
93 | (1) |
|
2.8.5 Entropy and Metricness |
|
|
94 | (1) |
|
2.8.6 Entropy and Axiom Systems |
|
|
94 | (1) |
|
2.8.7 Entropy, Inference, Robustness, and Consistency |
|
|
95 | (1) |
|
2.8.8 Kernel Estimation and Entropy |
|
|
96 | (1) |
|
2.9 Practitioner's Corner |
|
|
97 | (32) |
|
2.9.1 The Smoothed Bootstrap |
|
|
103 | (1) |
|
2.9.2 Testing Univariate Asymmetry |
|
|
104 | (2) |
|
2.9.3 Testing Equality of Univariate Densities |
|
|
106 | (2) |
|
2.9.4 Testing Nonlinear Pairwise Independence |
|
|
108 | (1) |
|
2.9.5 Testing Nonlinear Serial Independence |
|
|
109 | (2) |
|
2.9.6 Bounded Domains and Boundary Corrections |
|
|
111 | (7) |
|
2.9.7 Nonlinear Optimization and Multi-Starting |
|
|
118 | (5) |
|
2.9.8 Confidence Bands and Nonparametric Estimation |
|
|
123 | (6) |
|
|
129 | (2) |
|
3 Mixed-Data Probability Density and Cumulative Distribution Functions |
|
|
131 | (16) |
|
|
131 | (1) |
|
3.2 Smooth Mixed-Data Kernel Density and Cumulative Distribution Function Estimation |
|
|
132 | (3) |
|
3.2.1 Properties of the Mixed-Data Smooth Kernel Density Estimator |
|
|
133 | (2) |
|
3.2.2 Properties of the Mixed-Data Smooth Kernel Cumulative Distribution Estimator |
|
|
135 | (1) |
|
3.3 The Multivariate Extension |
|
|
135 | (2) |
|
3.4 Smooth Kernel Copula Function Estimation with Mixed-Data |
|
|
137 | (5) |
|
3.4.1 Copulae and Dependence |
|
|
139 | (3) |
|
3.5 Practitioner's Corner |
|
|
142 | (3) |
|
3.5.1 Testing Equality of Mixed-Data Multivariate Densities |
|
|
142 | (1) |
|
3.5.2 Generating Copula Function Contours |
|
|
143 | (2) |
|
|
145 | (2) |
|
4 Conditional Probability Density and Cumulative Distribution Functions |
|
|
147 | (40) |
|
|
147 | (1) |
|
4.2 Smooth Kernel Conditional Density Function Estimation |
|
|
148 | (4) |
|
4.2.1 Bandwidth Selection |
|
|
149 | (1) |
|
4.2.2 The Presence of Irrelevant Covariates |
|
|
150 | (2) |
|
4.3 Smooth Kernel Conditional Cumulative Distribution Function Estimation |
|
|
152 | (2) |
|
4.3.1 Bandwidth Selection |
|
|
153 | (1) |
|
4.4 Conditional Quantile Function Estimation |
|
|
154 | (4) |
|
4.4.1 Parametric Conditional Quantile Function Estimation |
|
|
154 | (3) |
|
4.4.2 Smooth Kernel Conditional Quantile Function Estimation |
|
|
157 | (1) |
|
4.5 Binary Choice and Multinomial Choice Models |
|
|
158 | (4) |
|
4.5.1 Parametric Binary Choice and Multinomial Choice Models |
|
|
158 | (1) |
|
4.5.2 Smooth Kernel Binary Choice and Multinomial Choice Models |
|
|
159 | (3) |
|
4.6 Practitioner's Corner |
|
|
162 | (23) |
|
4.6.1 Generating Counterfactual Predictions |
|
|
166 | (1) |
|
4.6.2 Bootstrapping Counterfactual Predictions |
|
|
166 | (4) |
|
4.6.3 The Smoothed Bootstrap |
|
|
170 | (2) |
|
4.6.4 Assessing Model Performance |
|
|
172 | (7) |
|
4.6.5 Average Treatment Effects and Propensity Score Matching |
|
|
179 | (6) |
|
|
185 | (2) |
II Conditional Moment Functions and Related Statistical Objects |
|
187 | (128) |
|
5 Conditional Moment Functions |
|
|
189 | (4) |
|
|
189 | (4) |
|
6 Conditional Mean Function Estimation |
|
|
193 | (82) |
|
|
193 | (2) |
|
6.2 Parametric Conditional Mean Models |
|
|
195 | (11) |
|
6.2.1 (Re)-interpretation of Conditional Mean Models |
|
|
197 | (2) |
|
6.2.2 Counterfactual Experiments and Conditional Mean Models |
|
|
199 | (7) |
|
6.3 Local Constant Kernel Regression |
|
|
206 | (20) |
|
6.3.1 Estimator Properties |
|
|
208 | (10) |
|
6.3.2 The IMSE-Optimal Bandwidth and Kernel Function |
|
|
218 | (1) |
|
6.3.3 Asymptotic Normality |
|
|
219 | (1) |
|
6.3.4 Outlier-Resistant Local Constant Kernel Regression |
|
|
219 | (1) |
|
6.3.5 Bandwidth Selection |
|
|
220 | (2) |
|
6.3.6 A Coefficient of Determination for Nonparametric Regression |
|
|
222 | (1) |
|
6.3.7 Local Constant Marginal Effects |
|
|
223 | (3) |
|
6.4 Local Polynomial Kernel Regression |
|
|
226 | (3) |
|
6.5 The Multivariate Local Polynomial Extension |
|
|
229 | (3) |
|
6.6 Local Polynomial Kernel Regression and Shrinkage |
|
|
232 | (3) |
|
6.7 Multivariate Mixed-Data Marginal Effects |
|
|
235 | (5) |
|
6.7.1 A Consistent Test for Predictor Relevance |
|
|
236 | (4) |
|
6.8 Time Series Kernel Regression |
|
|
240 | (5) |
|
6.9 Shape Constrained Kernel Regression |
|
|
245 | (3) |
|
6.10 Practitioner's Corner |
|
|
248 | (25) |
|
6.10.1 Kernel Regression Is Weighted Least Squares Estimation |
|
|
248 | (1) |
|
6.10.2 Joint Determination of the Polynomial Degree and Bandwidth |
|
|
249 | (4) |
|
6.10.3 A Consistent Nonparametric Test for Correct Parametric Specification |
|
|
253 | (4) |
|
6.10.4 Shape Constrained Kernel Regression |
|
|
257 | (3) |
|
6.10.5 A Multivariate Application of Local Linear Regression |
|
|
260 | (3) |
|
6.10.6 Confidence Bands and Nonparametric Estimation |
|
|
263 | (1) |
|
6.10.7 Assessing Model Performance |
|
|
264 | (5) |
|
6.10.8 Fixed-Effects Panel Data Models |
|
|
269 | (4) |
|
|
273 | (2) |
|
7 Conditional Mean Function Estimation with Endogenous Predictors |
|
|
275 | (16) |
|
|
275 | (1) |
|
7.2 Ill-Posed Inverse Problems and Identification |
|
|
276 | (4) |
|
7.2.1 Kernel Smoothing and Ill-Posedness |
|
|
277 | (2) |
|
7.2.2 Singular Design Matrices and Ill-Posedness |
|
|
279 | (1) |
|
7.3 Parametric Instrumental Regression |
|
|
280 | (1) |
|
7.4 Nonparametric Instrumental Regression |
|
|
281 | (4) |
|
7.5 Practitioner's Corner |
|
|
285 | (4) |
|
7.5.1 Estimation of Engel Curves |
|
|
285 | (1) |
|
7.5.2 Nonparametric Instrumental Regression with a Linear DGP |
|
|
285 | (4) |
|
|
289 | (2) |
|
8 Semiparametric Conditional Mean Function Estimation |
|
|
291 | (18) |
|
|
291 | (1) |
|
8.2 Robinson's Partially Linear Model |
|
|
291 | (3) |
|
8.3 Varying Coefficient Models |
|
|
294 | (2) |
|
8.4 Semiparametric Single Index Models |
|
|
296 | (4) |
|
8.4.1 Ichimura's Method (Continuous Y) |
|
|
297 | (1) |
|
8.4.2 Klein and Spady's Method (Binary Y) |
|
|
298 | (2) |
|
|
300 | (1) |
|
8.6 Practitioner's Corner |
|
|
300 | (7) |
|
8.6.1 A Specification Test for the Partially Linear Model |
|
|
300 | (1) |
|
8.6.2 Assessing Model Performance - Continuous Y |
|
|
301 | (6) |
|
|
307 | (2) |
|
9 Conditional Variance Function Estimation |
|
|
309 | (6) |
|
|
309 | (1) |
|
9.2 Local Linear Conditional Variance Function Estimation |
|
|
309 | (2) |
|
9.3 Practitioner's Corner |
|
|
311 | (2) |
|
9.3.1 A Simulated Illustration |
|
|
311 | (2) |
|
|
313 | (2) |
III Appendices |
|
315 | (52) |
|
A Large and Small Orders of Magnitude and Probability |
|
|
317 | (6) |
|
A.1 Big and Small O Notation |
|
|
317 | (2) |
|
A.2 Big and Small O in Probability Notation |
|
|
319 | (4) |
|
B R, RStudio, TeX, and Git |
|
|
323 | (4) |
|
B.1 Installation of R and RStudio Desktop |
|
|
323 | (1) |
|
|
323 | (2) |
|
|
324 | (1) |
|
|
324 | (1) |
|
|
324 | (1) |
|
B.3 What Is RStudio Desktop? |
|
|
325 | (1) |
|
B.3.1 Introduction to RStudio |
|
|
325 | (1) |
|
|
325 | (1) |
|
|
325 | (2) |
|
C Computational Considerations |
|
|
327 | (6) |
|
|
327 | (1) |
|
|
328 | (1) |
|
|
328 | (1) |
|
C.4 Multipole and Tree-Based Methods |
|
|
328 | (1) |
|
C.5 Computationally Efficient Kernel Estimation in R |
|
|
328 | (5) |
|
D R Markdown for Assignments |
|
|
333 | (10) |
|
D.1 Source Code (R Markdown) for This Document |
|
|
333 | (1) |
|
D.2 R, RStudio, TeX, and Git |
|
|
333 | (1) |
|
|
333 | (1) |
|
D.4 Creating a New R Markdown Document in RStudio |
|
|
334 | (1) |
|
D.5 Including R Results in Your R Markdown Document |
|
|
334 | (1) |
|
D.6 Reading Data from a URL |
|
|
334 | (1) |
|
|
335 | (1) |
|
D.8 Including Bulleted and Numbered Lists |
|
|
336 | (1) |
|
|
337 | (1) |
|
D.10 Including Verbatim (i.e., Freeform) Text |
|
|
337 | (1) |
|
D.11 Typesetting Mathematics |
|
|
337 | (1) |
|
D.12 Flexible Document Creation |
|
|
338 | (1) |
|
D.13 Knitting Your R Markdown Document |
|
|
338 | (1) |
|
D.14 Printing Your Document |
|
|
338 | (1) |
|
D.15 Troubleshooting and Tips |
|
|
339 | (4) |
|
|
343 | (24) |
|
|
343 | (1) |
|
E.2 Getting Started with R |
|
|
343 | (3) |
|
E.2.1 Reading Datasets Created by Other Software Programs |
|
|
344 | (1) |
|
E.2.2 Nonparametric Estimation of Density Functions |
|
|
345 | (1) |
|
E.3 Introduction to the R Package np: Working with npudens() |
|
|
346 | (21) |
|
E.3.1 Introduction to the npksum() Function |
|
|
348 | (1) |
|
E.3.2 Applied Nonparametric Density Estimation |
|
|
349 | (2) |
|
E.3.3 Introduction to Applied Nonparametric Regression |
|
|
351 | (1) |
|
E.3.4 Advanced Use of the npksum() Function |
|
|
352 | (2) |
|
E.3.5 Consistent Nonparametric Inference |
|
|
354 | (3) |
|
E.3.6 Non-nested Model Comparison |
|
|
357 | (2) |
|
E.3.7 Semiparametric Models |
|
|
359 | (1) |
|
E.3.8 Nonparametric Discrete Choice Models |
|
|
360 | (2) |
|
E.3.9 Shape Constrained Nonparametric Regression |
|
|
362 | (5) |
Bibliography |
|
367 | (24) |
Author Index |
|
391 | (6) |
Subject Index |
|
397 | |