I Framework for Thinking About AI and Robotics |
|
1 | (128) |
|
1 What Are Intelligent Robots? |
|
|
3 | (16) |
|
|
3 | (1) |
|
1.2 Definition: What Is an Intelligent Robot? |
|
|
4 | (3) |
|
1.3 What Are the Components of a Robot? |
|
|
7 | (1) |
|
1.4 Three Modalities: What Are the Kinds of Robots? |
|
|
8 | (3) |
|
1.5 Motivation: Why Robots? |
|
|
11 | (2) |
|
1.6 Seven Areas of AI: Why Intelligence? |
|
|
13 | (2) |
|
|
15 | (1) |
|
|
16 | (1) |
|
|
17 | (2) |
|
2 A Brief History of AI Robotics |
|
|
19 | (22) |
|
|
19 | (1) |
|
2.2 Robots as Tools, Agents, or Joint Cognitive Systems |
|
|
20 | (1) |
|
2.3 World War II and the Nuclear Industry |
|
|
21 | (3) |
|
2.4 Industrial Manipulators |
|
|
24 | (5) |
|
|
29 | (6) |
|
|
35 | (1) |
|
2.7 The Move to Joint Cognitive Systems |
|
|
36 | (1) |
|
|
37 | (1) |
|
|
38 | (1) |
|
|
38 | (3) |
|
3 Automation and Autonomy |
|
|
41 | (22) |
|
|
41 | (2) |
|
3.2 The Four Sliders of Autonomous Capabilities |
|
|
43 | (5) |
|
3.2.1 Plans: Generation versus Execution |
|
|
44 | (1) |
|
3.2.2 Actions: Deterministic versus Non-deterministic |
|
|
44 | (2) |
|
3.2.3 Models: Open- versus Closed-World |
|
|
46 | (2) |
|
3.2.4 Knowledge Representation: Symbols versus Signals |
|
|
48 | (1) |
|
|
48 | (1) |
|
3.4 Impact of Automation and Autonomy |
|
|
49 | (1) |
|
3.5 Impact on Programming Style |
|
|
50 | (1) |
|
3.6 Impact on Hardware Design |
|
|
50 | (2) |
|
3.7 Impact on Types of Functional Failures |
|
|
52 | (3) |
|
3.7.1 Functional Failures |
|
|
52 | (1) |
|
3.7.2 Impact on Types of Human Error |
|
|
53 | (2) |
|
3.8 Trade-Spaces in Adding Autonomous Capabilities |
|
|
55 | (2) |
|
|
57 | (2) |
|
|
59 | (2) |
|
|
61 | (2) |
|
4 Software Organization of Autonomy |
|
|
63 | (40) |
|
|
64 | (1) |
|
4.2 The Three Types of Software Architectures |
|
|
65 | (3) |
|
4.2.1 Types of Architectures |
|
|
66 | (1) |
|
4.2.2 Architectures Reinforce Good Software Engineering Principles |
|
|
67 | (1) |
|
4.3 Canonical AI Robotics Operational Architecture |
|
|
68 | (7) |
|
4.3.1 Attributes for Describing Layers |
|
|
68 | (2) |
|
|
70 | (1) |
|
4.3.3 The Deliberative Layer |
|
|
71 | (3) |
|
4.3.4 The Interactive Layer |
|
|
74 | (1) |
|
4.3.5 Canonical Operational Architecture Diagram |
|
|
75 | (1) |
|
4.4 Other Operational Architectures |
|
|
75 | (7) |
|
4.4.1 Levels of Automation |
|
|
76 | (2) |
|
4.4.2 Autonomous Control Levels (ACL) |
|
|
78 | (2) |
|
4.4.3 Levels of Initiative |
|
|
80 | (2) |
|
4.5 Five Subsystems in Systems Architectures |
|
|
82 | (3) |
|
4.6 Three Systems Architecture Paradigms |
|
|
85 | (10) |
|
4.6.1 Trait 1: Interaction Between Primitives |
|
|
85 | (2) |
|
4.6.2 Trait 2: Sensing Route |
|
|
87 | (2) |
|
4.6.3 Hierarchical Systems Architecture Paradigm |
|
|
89 | (2) |
|
4.6.4 Reactive Systems Paradigm |
|
|
91 | (2) |
|
4.6.5 Hybrid Deliberative/Reactive Systems Paradigm |
|
|
93 | (2) |
|
4.7 Execution Approval and Task Execution |
|
|
95 | (2) |
|
|
97 | (3) |
|
|
100 | (1) |
|
|
101 | (2) |
|
|
103 | (26) |
|
|
104 | (1) |
|
5.2 Taskable Agency versus Remote Presence |
|
|
105 | (1) |
|
5.3 The Seven Components of a Telesystem |
|
|
105 | (3) |
|
5.4 Human Supervisory Control |
|
|
108 | (8) |
|
5.4.1 Types of Supervisory Control |
|
|
109 | (1) |
|
5.4.2 Human Supervisory Control for Telesystems |
|
|
110 | (1) |
|
|
111 | (2) |
|
|
113 | (1) |
|
|
114 | (1) |
|
|
114 | (2) |
|
|
116 | (6) |
|
|
117 | (1) |
|
|
118 | (1) |
|
|
118 | (2) |
|
5.5.4 Human Out-of-the-Loop Control Problem |
|
|
120 | (2) |
|
5.6 Guidelines for Determining if a Telesystem Is Suitable for an Application |
|
|
122 | (3) |
|
5.6.1 Examples of Telesystems |
|
|
123 | (2) |
|
|
125 | (1) |
|
|
126 | (2) |
|
|
128 | (1) |
II Reactive Functionality |
|
129 | (190) |
|
|
131 | (22) |
|
|
131 | (1) |
|
6.2 Motivation for Exploring Animal Behaviors |
|
|
132 | (2) |
|
6.3 Agency and Marr's Computational Theory |
|
|
134 | (3) |
|
6.4 Example of Computational Theory: Rana Computatrix |
|
|
137 | (4) |
|
|
141 | (2) |
|
6.5.1 Reflexive Behaviors |
|
|
142 | (1) |
|
|
143 | (5) |
|
|
143 | (1) |
|
6.6.2 Behaviors and Schema Theory |
|
|
144 | (2) |
|
6.6.3 S-R: Schema Notation |
|
|
146 | (2) |
|
|
148 | (2) |
|
|
150 | (1) |
|
|
151 | (2) |
|
7 Perception and Behaviors |
|
|
153 | (32) |
|
|
153 | (2) |
|
7.2 Action-Perception Cycle |
|
|
155 | (1) |
|
7.3 Gibson: Ecological Approach |
|
|
156 | (5) |
|
|
158 | (1) |
|
7.3.2 Nonvisual Affordances |
|
|
159 | (2) |
|
7.4 Two Perceptual Systems |
|
|
161 | (1) |
|
7.5 Innate Releasing Mechanisms |
|
|
162 | (9) |
|
7.5.1 Definition of Innate Releasing Mechanisms |
|
|
165 | (5) |
|
7.5.2 Concurrent Behaviors |
|
|
170 | (1) |
|
7.6 Two Functions of Perception |
|
|
171 | (1) |
|
7.7 Example: Cockroach Hiding |
|
|
171 | (7) |
|
|
171 | (1) |
|
7.7.2 Identifying Releasers |
|
|
172 | (4) |
|
7.7.3 Implicit versus Explicit Sequencing |
|
|
176 | (1) |
|
|
177 | (1) |
|
7.7.5 Architectural Considerations |
|
|
178 | (1) |
|
|
178 | (3) |
|
|
181 | (1) |
|
|
182 | (3) |
|
8 Behavioral Coordination |
|
|
185 | (44) |
|
|
185 | (1) |
|
8.2 Coordination Function |
|
|
186 | (2) |
|
8.3 Cooperating Methods: Potential Fields |
|
|
188 | (16) |
|
8.3.1 Visualizing Potential Fields |
|
|
188 | (3) |
|
|
191 | (3) |
|
8.3.3 Potential Fields and Perception |
|
|
194 | (1) |
|
8.3.4 Programming a Single Potential Field |
|
|
194 | (2) |
|
8.3.5 Combination of Fields and Behaviors |
|
|
196 | (3) |
|
8.3.6 Example Using One Behavior per Sensor |
|
|
199 | (3) |
|
8.3.7 Advantages and Disadvantages |
|
|
202 | (2) |
|
8.4 Competing Methods: Subsumption |
|
|
204 | (9) |
|
|
206 | (7) |
|
8.5 Sequences: Finite State Automata |
|
|
213 | (7) |
|
8.5.1 A Follow the Road FSA |
|
|
213 | (4) |
|
8.5.2 A Pick Up the Trash FSA |
|
|
217 | (3) |
|
|
220 | (2) |
|
8.7 AI and Behavior Coordination |
|
|
222 | (1) |
|
|
223 | (1) |
|
|
224 | (2) |
|
|
226 | (3) |
|
|
229 | (22) |
|
|
229 | (1) |
|
9.2 Mechanical Locomotion |
|
|
230 | (5) |
|
9.2.1 Holonomic versus Nonholonomic |
|
|
231 | (1) |
|
|
231 | (4) |
|
9.3 Biomimetic Locomotion |
|
|
235 | (3) |
|
|
238 | (7) |
|
9.4.1 Number of Leg Events |
|
|
239 | (1) |
|
|
240 | (3) |
|
|
243 | (1) |
|
|
243 | (2) |
|
|
245 | (1) |
|
|
246 | (1) |
|
|
247 | (2) |
|
|
249 | (2) |
|
|
251 | (34) |
|
|
252 | (1) |
|
10.2 Sensor and Sensing Model |
|
|
253 | (2) |
|
10.2.1 Sensors: Active or Passive |
|
|
254 | (1) |
|
10.2.2 Sensors: Types of Output and Usage |
|
|
255 | (1) |
|
10.3 Odometry, Inertial Navigation System (INS) and Global Positioning System (GPS) |
|
|
255 | (1) |
|
|
256 | (2) |
|
|
258 | (11) |
|
10.5.1 Computer Vision Definition |
|
|
258 | (1) |
|
10.5.2 Grayscale and Color Representation |
|
|
259 | (5) |
|
10.5.3 Region Segmentation |
|
|
264 | (3) |
|
10.5.4 Color Histogramming |
|
|
267 | (2) |
|
10.6 Choosing Sensors and Sensing |
|
|
269 | (9) |
|
|
269 | (2) |
|
10.6.2 Behavioral Sensor Fusion |
|
|
271 | (3) |
|
10.6.3 Designing a Sensor Suite |
|
|
274 | (4) |
|
|
278 | (2) |
|
|
280 | (3) |
|
|
283 | (2) |
|
|
285 | (34) |
|
|
285 | (3) |
|
|
288 | (5) |
|
|
293 | (1) |
|
11.4 Sonar or Ultrasonics |
|
|
293 | (14) |
|
|
300 | (2) |
|
|
302 | (2) |
|
|
304 | (1) |
|
|
304 | (3) |
|
11.5 Case Study: Hors d'Oeuvres, Anyone? |
|
|
307 | (8) |
|
|
315 | (1) |
|
|
315 | (2) |
|
|
317 | (2) |
III Deliberative Functionality |
|
319 | (162) |
|
|
321 | (32) |
|
|
321 | (2) |
|
|
323 | (12) |
|
12.2.1 More Realistic Strips Example |
|
|
326 | (5) |
|
|
331 | (1) |
|
12.2.3 Revisiting the Closed-World Assumption and the Frame Problem |
|
|
332 | (1) |
|
12.3 Symbol Grounding Problem |
|
|
333 | (2) |
|
|
335 | (4) |
|
12.4.1 Local Perceptual Spaces |
|
|
335 | (1) |
|
12.4.2 Multi-level or Hierarchical World Models |
|
|
336 | (2) |
|
|
338 | (1) |
|
12.4.4 Global World Model and Deliberation |
|
|
339 | (1) |
|
12.5 Nested Hierarchical Controller |
|
|
339 | (3) |
|
|
342 | (4) |
|
12.7 Fault Detection Identification and Recovery |
|
|
346 | (1) |
|
12.8 Programming Considerations |
|
|
347 | (1) |
|
|
348 | (1) |
|
|
349 | (2) |
|
|
351 | (2) |
|
|
353 | (32) |
|
|
353 | (2) |
|
13.2 The Four Questions of Navigation |
|
|
355 | (3) |
|
|
358 | (1) |
|
13.4 Types of Path Planning |
|
|
359 | (2) |
|
13.5 Landmarks and Gateways |
|
|
361 | (3) |
|
|
364 | (5) |
|
13.6.1 Distinctive Places |
|
|
365 | (3) |
|
13.6.2 Advantages and Disadvantages |
|
|
368 | (1) |
|
|
369 | (1) |
|
13.8 Case Study of Topological Navigation with a Hybrid Architecture |
|
|
369 | (10) |
|
13.8.1 Topological Path Planning |
|
|
370 | (5) |
|
13.8.2 Navigation Scripts |
|
|
375 | (3) |
|
|
378 | (1) |
|
13.9 Discussion of Opportunities for AI |
|
|
379 | (2) |
|
|
381 | (1) |
|
|
382 | (2) |
|
|
384 | (1) |
|
14 Metric Path Planning and Motion Planning |
|
|
385 | (32) |
|
|
385 | (2) |
|
14.2 Four Situations Where Topological Navigation Is Not Sufficient |
|
|
387 | (2) |
|
|
389 | (7) |
|
|
391 | (2) |
|
14.3.2 Generalized Voronoi Graphs |
|
|
393 | (1) |
|
|
394 | (1) |
|
|
395 | (1) |
|
14.4 Metric Path Planning |
|
|
396 | (6) |
|
14.4.1 A and Graph-Based Planners |
|
|
396 | (6) |
|
14.4.2 Wavefront-Based Planners |
|
|
402 | (1) |
|
14.5 Executing a Planned Path |
|
|
402 | (5) |
|
|
402 | (2) |
|
|
404 | (3) |
|
|
407 | (3) |
|
14.7 Criteria for Evaluating Path and Motion Planners |
|
|
410 | (1) |
|
|
411 | (2) |
|
|
413 | (2) |
|
|
415 | (2) |
|
15 Localization, Mapping, and Exploration |
|
|
417 | (28) |
|
|
418 | (1) |
|
|
419 | (2) |
|
15.3 Feature-Based Localization |
|
|
421 | (2) |
|
|
423 | (1) |
|
15.5 Static versus Dynamic Environments |
|
|
424 | (1) |
|
15.6 Simultaneous Localization and Mapping |
|
|
424 | (2) |
|
15.7 Terrain Identification and Mapping |
|
|
426 | (6) |
|
15.7.1 Digital Terrain Elevation Maps |
|
|
427 | (1) |
|
15.7.2 Terrain Identification |
|
|
427 | (1) |
|
15.7.3 Stereophotogrammetry |
|
|
428 | (4) |
|
15.8 Scale and Traversability |
|
|
432 | (3) |
|
|
432 | (2) |
|
15.8.2 Traversability Attributes |
|
|
434 | (1) |
|
|
435 | (4) |
|
15.9.1 Reactive Exploration |
|
|
435 | (1) |
|
15.9.2 Frontier-Based Exploration |
|
|
436 | (1) |
|
15.9.3 Generalized Voronoi Graph Methods |
|
|
437 | (2) |
|
15.10 Localization, Mapping, Exploration, and AI |
|
|
439 | (2) |
|
|
441 | (1) |
|
|
442 | (1) |
|
|
443 | (2) |
|
|
445 | (36) |
|
|
446 | (1) |
|
|
447 | (2) |
|
16.3 Types of Learning by Example |
|
|
449 | (1) |
|
16.4 Common Supervised Learning Algorithms |
|
|
450 | (4) |
|
|
450 | (2) |
|
16.4.2 Support Vector Machines |
|
|
452 | (1) |
|
|
452 | (2) |
|
16.5 Common Unsupervised Learning Algorithms |
|
|
454 | (6) |
|
|
454 | (1) |
|
16.5.2 Artificial Neural Networks |
|
|
455 | (5) |
|
16.6 Reinforcement Learning |
|
|
460 | (8) |
|
|
461 | (1) |
|
|
461 | (3) |
|
16.6.3 Q-learning Example |
|
|
464 | (4) |
|
16.6.4 Q-learning Discussion |
|
|
468 | (1) |
|
16.7 Evolutionary Robotics and Genetic Algorithms |
|
|
468 | (5) |
|
16.8 Learning and Architecture |
|
|
473 | (1) |
|
16.9 Gaps and Opportunities |
|
|
474 | (1) |
|
|
475 | (1) |
|
|
476 | (2) |
|
|
478 | (3) |
IV Interactive Functionality |
|
481 | (74) |
|
17 MultiRobot Systems (MRS) |
|
|
483 | (28) |
|
|
484 | (1) |
|
17.2 Four Opportunities and Seven Challenges |
|
|
484 | (3) |
|
17.2.1 Four Advantages of MRS |
|
|
485 | (1) |
|
17.2.2 Seven Challenges in MRS |
|
|
486 | (1) |
|
17.3 Multirobot Systems and AI |
|
|
487 | (3) |
|
17.4 Designing MRS for Tasks |
|
|
490 | (3) |
|
17.4.1 Time Expectations for a Task |
|
|
490 | (1) |
|
|
491 | (1) |
|
|
492 | (1) |
|
|
492 | (1) |
|
17.5 Coordination Dimension of MRS Design |
|
|
493 | (1) |
|
17.6 Systems Dimensions in Design |
|
|
494 | (5) |
|
|
495 | (1) |
|
|
496 | (2) |
|
|
498 | (1) |
|
17.7 Five Most Common Occurrences of MRS |
|
|
499 | (2) |
|
17.8 Operational Architectures for MRS |
|
|
501 | (2) |
|
|
503 | (1) |
|
|
504 | (1) |
|
|
505 | (3) |
|
|
508 | (3) |
|
18 Human-Robot Interaction |
|
|
511 | (44) |
|
|
512 | (2) |
|
18.2 Taxonomy of Interaction |
|
|
514 | (2) |
|
18.3 Contributions from HCI, Psychology, Communications |
|
|
516 | (2) |
|
18.3.1 Human-Computer Interaction |
|
|
516 | (1) |
|
|
517 | (1) |
|
|
518 | (1) |
|
|
518 | (7) |
|
18.4.1 Eight Golden Rules for User Interface Design |
|
|
519 | (3) |
|
18.4.2 Situation Awareness |
|
|
522 | (3) |
|
|
525 | (1) |
|
18.5 Modeling Domains, Users, and Interactions |
|
|
525 | (6) |
|
18.5.1 Motivating Example of Users and Interactions |
|
|
526 | (2) |
|
18.5.2 Cognitive Task Analysis |
|
|
528 | (1) |
|
18.5.3 Cognitive Work Analysis |
|
|
529 | (2) |
|
18.6 Natural Language and Naturalistic User Interfaces |
|
|
531 | (7) |
|
18.6.1 Natural Language Understanding |
|
|
531 | (2) |
|
18.6.2 Semantics and Communication |
|
|
533 | (1) |
|
18.6.3 Models of the Inner State of the Agent |
|
|
534 | (1) |
|
18.6.4 Multi-modal Communication |
|
|
535 | (3) |
|
|
538 | (2) |
|
|
540 | (2) |
|
|
542 | (4) |
|
18.9.1 Data Collection Methods |
|
|
543 | (2) |
|
|
545 | (1) |
|
18.10 Human-Robot Interaction and the Seven Areas of Artificial Intelligence |
|
|
546 | (1) |
|
|
547 | (2) |
|
|
549 | (3) |
|
|
552 | (3) |
V Design and the Ethics of Building Intelligent Robots |
|
555 | (42) |
|
19 Designing and Evaluating Autonomous Systems |
|
|
557 | (28) |
|
|
557 | (2) |
|
19.2 Designing a Specific Autonomous Capability |
|
|
559 | (3) |
|
|
559 | (1) |
|
19.2.2 Five Questions for Designing an Autonomous Robot |
|
|
560 | (2) |
|
19.3 Case Study: Unmanned Ground Robotics Competition |
|
|
562 | (7) |
|
19.4 Taxonomies and Metrics versus System Design |
|
|
569 | (2) |
|
19.5 Holistic Evaluation of an Intelligent Robot |
|
|
571 | (7) |
|
|
572 | (1) |
|
19.5.2 Four Types of Experiments |
|
|
573 | (2) |
|
|
575 | (3) |
|
19.6 Case Study: Concept Experimentation |
|
|
578 | (3) |
|
|
581 | (1) |
|
|
582 | (1) |
|
|
583 | (2) |
|
|
585 | (12) |
|
|
585 | (2) |
|
|
587 | (1) |
|
20.3 Categorizations of Ethical Agents |
|
|
588 | (2) |
|
20.3.1 Moor's Four Categories |
|
|
588 | (1) |
|
20.3.2 Categories of Morality |
|
|
589 | (1) |
|
|
590 | (1) |
|
20.4.1 Approaches from Philosophy |
|
|
590 | (1) |
|
20.4.2 Approaches from Robotics |
|
|
591 | (1) |
|
20.5 Asimov's Three Laws of Robotics |
|
|
591 | (2) |
|
20.5.1 Problems with the Three Laws |
|
|
592 | (1) |
|
20.5.2 The Three Laws of Responsible Robotics |
|
|
592 | (1) |
|
20.6 Artificial Intelligence and Implementing Ethics |
|
|
593 | (1) |
|
|
594 | (1) |
|
|
594 | (1) |
|
|
595 | (2) |
Bibliography |
|
597 | (16) |
Index |
|
613 | |