Muutke küpsiste eelistusi

E-raamat: Introduction to Analysis: Theorems and Examples

  • Formaat - EPUB+DRM
  • Hind: 43,21 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book focuses on the theoretical aspects of calculus. The book begins with a chapter on set theory before thoroughly discussing real numbers, then moves onto sequences, series, and their convergence. The author explains why an understanding of real numbers is essential in order to create a foundation for studying analysis. Since the Cantor set is elusive to many, a section is devoted to binary/ternary numbers and the Cantor set.  The book then moves on to continuous functions, differentiations, integrations, and uniform convergence of sequences of functions. An example of a nontrivial uniformly Cauchy sequence of functions is given. The author defines each topic, identifies important theorems, and includes many examples throughout each chapter. The book also provides introductory instruction on proof writing, with an emphasis on how to execute a precise writing style.

Set Theory.- Real Numbers.- Sequences and Series.- Continuous Functions.- Differentiations.- Integrations.- Sequences and Series of Functions.

Hidefumi Katsuura is Professor Emeritus at the San Jose State University Department of Mathematics and Statistics, where he began teaching in 1984. He earned his Ph.D. in Mathematics with a focus on topology from the University of Delaware. He is the author of over thirty articles on a variety of topics. His current research interest is three-dimensional geometry.