Muutke küpsiste eelistusi

E-raamat: Introduction to the Atomic and Radiation Physics of Plasmas

(University of York)
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 22-Feb-2018
  • Kirjastus: Cambridge University Press
  • Keel: eng
  • ISBN-13: 9781108318013
  • Formaat - EPUB+DRM
  • Hind: 75,32 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 22-Feb-2018
  • Kirjastus: Cambridge University Press
  • Keel: eng
  • ISBN-13: 9781108318013

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The physics of emission, absorption and interaction of light in astrophysics and in laboratory plasmas is developed from first principles and applied across various fields, from quantum mechanics, electricity and magnetism, to statistical physics. This text links undergraduate level atomic and radiation physics with the advanced material required for postgraduate study and research.

Plasmas comprise more than 99% of the observable universe. They are important in many technologies and are key potential sources for fusion power. Atomic and radiation physics is critical for the diagnosis, observation and simulation of astrophysical and laboratory plasmas, and plasma physicists working in a range of areas from astrophysics, magnetic fusion, and inertial fusion utilise atomic and radiation physics to interpret measurements. This text develops the physics of emission, absorption and interaction of light in astrophysics and in laboratory plasmas from first principles using the physics of various fields of study including quantum mechanics, electricity and magnetism, and statistical physics. Linking undergraduate level atomic and radiation physics with the advanced material required for postgraduate study and research, this text adopts a highly pedagogical approach and includes numerous exercises within each chapter for students to reinforce their understanding of the key concepts.

Muu info

The physics of emission, absorption and interaction of light in astrophysics and in laboratory plasmas is developed from first principles.
Preface ix
1 Plasma and Atomic Physics
1(19)
1.1 Plasma Physics
3(6)
1.2 Free Electron Speed and Energy Distributions
9(2)
1.3 The Density of Quantum States for Free Electrons
11(1)
1.4 The Degree of Ionisation
12(3)
1.5 The Bohr Energy Level Model for Atoms and Ions
15(5)
Exercises
18(2)
2 The Propagation of Light
20(32)
2.1 Electromagnetic Waves in Plasmas
21(6)
2.2 Electromagnetic Waves in a Magnetised Plasma
27(4)
2.3 Absorption of Light
31(3)
2.4 Focused Laser Light in Plasmas
34(12)
2.5 Radiation and Charge Acceleration
46(6)
Exercises
49(3)
3 Scattering
52(28)
3.1 Scattering by a Free Electron
53(2)
3.2 Scattering by Bound Electrons
55(3)
3.3 Scattering by a Multi-Electron Atom
58(4)
3.4 Refractive Index Values
62(8)
3.5 Coherent and Incoherent Thomson Scattering by Free Electrons
70(4)
3.6 Scattering of Unpolarised Light and Compton Scattering
74(6)
Exercises
77(3)
4 Radiation Emission in Plasmas
80(17)
4.1 The Planck Radiation Law
80(7)
4.2 The Einstein A and B Coefficients
87(3)
4.3 Emission and Absorption
90(3)
4.4 Introducing the Equation of Radiative Transfer
93(4)
Exercises
95(2)
5 Radiation Emission Involving Free Electrons
97(16)
5.1 Cyclotron Radiation
97(4)
5.2 Bremsstrahlung
101(2)
5.3 Inverse Bremsstrahlung Absorption
103(1)
5.4 Radiative Recombination
104(4)
5.5 Photo-Ionisation
108(1)
5.6 Generalised Expressions for Radiative Processes Involving Free Electrons
109(4)
Exercises
111(2)
6 Opacity
113(14)
6.1 The Equation of Radiative Transfer
114(1)
6.2 Intensities in an Optically Thick Planar Geometry
115(2)
6.3 Radiation Pressure in a Planar Geometry
117(1)
6.4 Radiation Diffusion in a Planar Geometry
118(2)
6.5 The Rosseland Mean Opacity
120(2)
6.6 Intensities Absorbed in a Thin Layer
122(1)
6.7 Relationships between the Frequency-Averaged Opacities
123(4)
Exercises
125(2)
7 Discrete Bound Quantum States: Hydrogen and Hydrogen-Like Ions
127(25)
7.1 A Quantum Mechanical Treatment of Atoms and Ions
128(1)
7.2 The Hydrogen Atom
129(7)
7.3 Magnetic Moment, Electron Spin and Degeneracy
136(2)
7.4 Hydrogen Fine Structure
138(7)
7.5 Spectroscopic Notation
145(1)
7.6 Hyperfine Structure: The Effect of Nuclear Spin
145(4)
7.7 Summary for Hydrogen and Hydrogen-Like Ions
149(3)
Exercises
149(3)
8 Discrete Bound States: Many-Electron Atoms and Ions
152(14)
8.1 Exchange Parity and the Pauli Exclusion Principle
153(1)
8.2 The Central Field Approximation
154(5)
8.3 The Coulomb and Spin-Orbit Interactions
159(5)
8.4 Summary for Multi-Electron Atoms and Ions
164(2)
Exercises
164(2)
9 Discrete Bound States: Molecules
166(11)
9.1 The Hydrogen Molecule Ion H2+
167(5)
9.2 Covalent and Ionic Molecular Bonds
172(1)
9.3 Molecular Vibrational and Rotational States
172(5)
Exercises
174(3)
10 Radiative Transitions between Discrete Quantum States
177(31)
10.1 Quantum Theory of the Atom-Radiation Interaction
178(11)
10.2 Selection Rules
189(1)
10.3 Lineshapes
190(13)
10.4 Transitions between States Affected by Zeeman and Stark effects
203(5)
Exercises
205(3)
11 Collisions
208(18)
11.1 Collisions in Plasmas
208(2)
11.2 A Consequence of the Conservation of Angular Momentum in Collisions
210(1)
11.3 The Evaluation of Collisional Cross-Sections
211(6)
11.4 The Evaluation of Inelastic Collisional Cross-Sections
217(2)
11.5 Scaling of Inelastic Cross-Sections
219(2)
11.6 Collisional Excitation for Forbidden Transitions
221(1)
11.7 Inelastic Atomic and Ionic Collisions
221(1)
11.8 Collisional Ionisation
221(1)
11.9 Charge Exchange Recombination
222(2)
11.10 Dissociative Recombination
224(2)
Exercises
224(2)
12 Collisional-Radiative Models
226(29)
12.1 Collisional Excitation and De-Excitation
226(3)
12.2 Collisional Ionisation and Three-Body Recombination
229(2)
12.3 Collisional and Radiative Processes
231(3)
12.4 The Escape Factor Approximation for the Effects of Radiation
234(2)
12.5 Coronal Equilibrium
236(3)
12.6 Dielectronic Recombination and Auto-Ionisation
239(4)
12.7 Criteria for LTE
243(1)
12.8 Spectral Line Intensity Ratios
244(2)
12.9 The Average Ionisation
246(9)
Exercises
250(5)
13 High-Density Plasmas
255(23)
13.1 Examples of High-Density Plasmas
256(2)
13.2 The Ion-Ion Plasma Coupling Constant
258(1)
13.3 The Fermi Energy and Pressure of Free Electrons
259(4)
13.4 The Saha-Boltzmann Equation at High Density
263(2)
13.5 The Thomas-Fermi Model
265(2)
13.6 The Average Atom Model
267(1)
13.7 Continuum Lowering
268(2)
13.8 Collisional Rates at High Density
270(4)
13.9 Radiative Rates at High Density
274(4)
Exercises
276(2)
Appendix Vectors, Maxwell's Equations, the Harmonic Oscillator and a Sum Rule
278(13)
A.1 Vector Analysis
278(5)
A.2 Maxwell's Equations
283(2)
A.3 The Harmonic Oscillator
285(3)
A.4 The Thomas-Reiche-Kuhn Sum Rule
288(3)
References 291(6)
Index 297
G. J. Tallents is Professor in Physics at the York Plasma Institute at the University of York. His current research centres on the effects of high plasma density on spectroscopy and the interaction of extreme ultra-violet lasers with solid targets.