Muutke küpsiste eelistusi

E-raamat: Introduction to Autonomous Manipulation: Case Study with an Underwater Robot, SAUVIM

  • Formaat - PDF+DRM
  • Hind: 110,53 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Autonomous manipulation is a challenge in robotic technologies. It refers to the capability of a mobile robot system with one or more manipulators that performs intervention tasks requiring physical contacts in unstructured environments and without continuous human supervision. Achieving autonomous manipulation capability is a quantum leap in robotic technologies as it is currently beyond the state of the art in robotics.

This book addresses issues with the complexity of the problems encountered in autonomous manipulation including representation and modeling of robotic structures, kinematic and dynamic robotic control, kinematic and algorithmic singularity avoidance, dynamic task priority, workspace optimization and environment perception. Further development in autonomous manipulation should be able to provide robust improvements of the solutions for all of the above issues. The book provides an extensive tract on sensory-based autonomous manipulation for intervention tasks in unstructured environments. After presenting the theoretical foundations for kinematic and dynamic modelling as well as task-priority based kinematic control of multi-body systems, the work is focused on one of the most advanced underwater vehicle-manipulator system, SAUVIM (Semi-Autonomous Underwater Vehicle for Intervention Missions). Solutions to the problem of target identification and localization are proposed, a number of significant case studies are discussed and practical examples an

d experimental/simulation results are presented. The book may inspire the robot research community to further investigate critical issues in autonomous manipulation and to develop robot systems that can profoundly impact our society for the better.

Arvustused

The present book is devoted to autonomous manipulation systems . Every chapter ends with references and at the end of the book a short index is given. After reading this book the reader will be convinced that the intended audience for it consists of control scientists and control engineers as well as graduate and Ph.D. students in the area of advanced robotics. (Clementina D. Mladenova, Mathematical Reviews, August, 2015)

1 Introduction
1(6)
1.1 Autonomous Manipulation
1(2)
1.2 State of the Art: SAUVIM for Autonomous Intervention Missions
3(4)
References
5(2)
2 Geometry, Kinematics and Dynamics of Multi-body Systems
7(46)
2.1 Geometry
8(15)
2.1.1 Vector Operations
8(1)
2.1.2 Reference Systems
9(11)
2.1.3 Geometry of Robotics Structures
20(3)
2.2 Kinematics
23(22)
2.2.1 Introduction to General Kinematics
23(5)
2.2.2 Joint Kinematics
28(11)
2.2.3 Kinematics of Robotic Systems
39(6)
2.3 Dynamics
45(8)
2.3.1 Equilibrium of a Manipulation Structure
46(1)
2.3.2 The Lagrange Equation
47(5)
References
52(1)
3 Kinematic Control
53(26)
3.1 Generation of the Velocity Reference
54(3)
3.1.1 Closing the Feedback Loop
55(2)
3.2 Inverse Kinematics
57(6)
3.2.1 Resolved Motion Rate Control
57(2)
3.2.2 Task-Priority-Based Decomposition
59(2)
3.2.3 Measure of Manipulability
61(2)
3.3 Task Reconstruction for Singularity Avoidance
63(16)
3.3.1 Task Reconstruction: Single Manipulation Variable
63(4)
3.3.2 Task Reconstruction: Case of Two Tasks with Order of Priority
67(3)
3.3.3 Generalization of Task Reconstruction to Multiple Subtasks
70(2)
3.3.4 Experimental Results
72(5)
References
77(2)
4 The SAUVIM Underwater Vehicle-Manipulator System
79(28)
4.1 Modeling the SAUVIM Vehicle-Manipulator System
79(6)
4.2 Workspace Optimization with Task Reconstruction
85(5)
4.2.1 Task Formulation for Workspace Optimization
86(4)
4.3 The SAUVIM Dynamic Control System
90(5)
4.3.1 Vehicle Dynamics
90(5)
4.4 Identification of Dynamic Parameters
95(12)
4.4.1 COB Identification with Extended Kalman Filter
96(5)
4.4.2 Optimal Configuration for Hovering
101(1)
4.4.3 Implementation
101(1)
4.4.4 Simulation Results
102(1)
4.4.5 Experimental Results
103(2)
References
105(2)
5 Target Localization
107(16)
5.1 Target Identification and Localization
107(2)
5.2 Mid-Range Object Identification with DIDSON Sonar
109(7)
5.2.1 Model Building
110(2)
5.2.2 Image Acquisition and Filtering
112(1)
5.2.3 Matched Filter
112(1)
5.2.4 Localization and Iteration
113(3)
5.3 Underwater Short-Range Target Localization
116(7)
5.3.1 Localization Using Video Processing
119(2)
5.3.2 The Cable-Cutting Demo
121(1)
References
122(1)
6 Case Study
123(34)
6.1 The Real-Time Architecture of SAUVIM
123(23)
6.1.1 Layer 0: The Hardware
124(1)
6.1.2 Layer 1 and 2: Low Level Interface for Robotic Actuators
125(6)
6.1.3 Layer 3: Medium Level Controller
131(4)
6.1.4 Layer 4: High-Level Robot Programming Language
135(10)
6.1.5 Layer 5: The Communication Layer
145(1)
6.2 Application Example
146(7)
6.2.1 Phase 1: Undock from the Pier and Navigate to a Search Area
146(2)
6.2.2 Phase 2: Search for the Submerged Platform
148(1)
6.2.3 Phase 3: Navigate and Dive Toward the Platform
149(1)
6.2.4 Phase 4: Hover (Station Keeping)
150(1)
6.2.5 Phase 5: Hook a Recovery Tool to the Target Object (Autonomous Manipulation)
151(2)
6.2.6 Phase 6: Return to the Pier
153(1)
6.3 Conclusions
153(4)
References
155(2)
Appendix A Mathematical Supplement 157(4)
Index 161