|
1 Uncertainty and Decisions |
|
|
1 | (14) |
|
1.1 Subjective Uncertainty and Possibilities |
|
|
1 | (2) |
|
|
1 | (1) |
|
1.1.2 Subjective Uncertainty |
|
|
2 | (1) |
|
1.1.3 Possible Outcomes and Events |
|
|
2 | (1) |
|
1.2 Decisions: Actions, Outcomes, Consequences |
|
|
3 | (2) |
|
1.2.1 Elements of a Decision Problem |
|
|
3 | (1) |
|
1.2.2 Preferences on Actions |
|
|
3 | (2) |
|
1.3 Subjective Probability |
|
|
5 | (3) |
|
|
5 | (1) |
|
1.3.2 Equivalent Standard Events |
|
|
6 | (1) |
|
1.3.3 Definition of Subjective Probability |
|
|
6 | (1) |
|
1.3.4 Contrast with Frequentist Probability |
|
|
7 | (1) |
|
1.3.5 Conditional Probability |
|
|
7 | (1) |
|
1.3.6 Updating Beliefs: Bayes Theorem |
|
|
8 | (1) |
|
|
8 | (4) |
|
1.4.1 Principle of Maximising Expected Utility |
|
|
9 | (1) |
|
1.4.2 Utilities for Bounded Decision Problems |
|
|
10 | (1) |
|
1.4.3 Utilities for Unbounded Decision Problems |
|
|
10 | (1) |
|
1.4.4 Randomised Strategies |
|
|
11 | (1) |
|
1.4.5 Conditional Probability as a Consequence of Coherence |
|
|
11 | (1) |
|
1.5 Estimation and Prediction |
|
|
12 | (3) |
|
1.5.1 Continuous Random Variables and Decision Spaces |
|
|
12 | (1) |
|
1.5.2 Estimation and Loss Functions |
|
|
12 | (1) |
|
|
13 | (2) |
|
2 Prior and Likelihood Representation |
|
|
15 | (8) |
|
2.1 Exchangeability and Infinite Exchangeability |
|
|
15 | (1) |
|
2.2 De Finetti's Representation Theorem |
|
|
16 | (2) |
|
2.3 Prior, Likelihood and Posterior |
|
|
18 | (5) |
|
|
18 | (1) |
|
2.3.2 Non-informative Priors |
|
|
18 | (1) |
|
|
19 | (1) |
|
|
19 | (1) |
|
2.3.5 Bayesian Paradigm for Prior to Posterior Reporting |
|
|
20 | (1) |
|
2.3.6 Asymptotic Consistency |
|
|
20 | (1) |
|
2.3.7 Asymptotic Normality |
|
|
21 | (2) |
|
3 Graphical Modelling and Hierarchical Models |
|
|
23 | (10) |
|
|
23 | (3) |
|
|
23 | (1) |
|
3.1.2 Neighbourhoods of Graph Nodes |
|
|
24 | (1) |
|
3.1.3 Paths, Cycles and Directed Acyclic Graphs |
|
|
25 | (1) |
|
3.1.4 Cliques and Separation |
|
|
25 | (1) |
|
|
26 | (4) |
|
|
26 | (1) |
|
|
27 | (2) |
|
|
29 | (1) |
|
|
30 | (3) |
|
|
33 | (6) |
|
|
33 | (1) |
|
|
34 | (2) |
|
|
36 | (1) |
|
|
36 | (1) |
|
4.5 Posterior Summaries for Parametric Models |
|
|
37 | (2) |
|
4.5.1 Marginal Distributions |
|
|
37 | (1) |
|
|
38 | (1) |
|
5 Computational Inference |
|
|
39 | (22) |
|
5.1 Intractable Integrals in Bayesian Inference |
|
|
39 | (1) |
|
5.2 Monte Carlo Estimation |
|
|
40 | (4) |
|
|
41 | (1) |
|
5.2.2 Estimation Under a Loss Function |
|
|
41 | (1) |
|
5.2.3 Importance Sampling |
|
|
42 | (1) |
|
5.2.4 Normalising Constant Estimation |
|
|
43 | (1) |
|
5.3 Markov Chain Monte Carlo |
|
|
44 | (6) |
|
5.3.1 Technical Requirements of Markov Chains in MCMC |
|
|
44 | (2) |
|
|
46 | (2) |
|
5.3.3 Metropolis-Hastings Algorithm |
|
|
48 | (2) |
|
5.4 Hamiltonian Markov Chain Monte Carlo |
|
|
50 | (2) |
|
5.5 Analytic Approximations |
|
|
52 | (8) |
|
5.5.1 Normal Approximation |
|
|
52 | (1) |
|
5.5.2 Laplace Approximations |
|
|
53 | (2) |
|
5.5.3 Variational Inference |
|
|
55 | (5) |
|
|
60 | (1) |
|
6 Bayesian Software Packages |
|
|
61 | (6) |
|
6.1 Illustrative Statistical Model |
|
|
61 | (1) |
|
|
62 | (3) |
|
|
63 | (2) |
|
6.3 Other Software Libraries |
|
|
65 | (2) |
|
|
65 | (1) |
|
|
65 | (2) |
|
7 Criticism and Model Choice |
|
|
67 | (12) |
|
|
68 | (1) |
|
|
68 | (1) |
|
|
69 | (4) |
|
7.3.1 Selecting From a Set of Models |
|
|
69 | (1) |
|
7.3.2 Pairwise Comparisons: Bayes Factors |
|
|
70 | (2) |
|
7.3.3 Bayesian Information Criterion |
|
|
72 | (1) |
|
7.4 Posterior Predictive Checking |
|
|
73 | (6) |
|
7.4.1 Posterior Predictive p-Values |
|
|
73 | (1) |
|
7.4.2 Monte Carlo Estimation |
|
|
74 | (1) |
|
|
74 | (5) |
|
|
79 | (14) |
|
8.1 Parametric Regression |
|
|
79 | (1) |
|
|
80 | (6) |
|
|
81 | (4) |
|
|
85 | (1) |
|
8.3 Generalisation of the Linear Model |
|
|
86 | (1) |
|
8.3.1 General Basis Functions |
|
|
86 | (1) |
|
8.4 Generalised Linear Models |
|
|
87 | (6) |
|
|
88 | (2) |
|
8.4.2 Logistic regression |
|
|
90 | (3) |
|
|
93 | (14) |
|
9.1 Random Probability Measures |
|
|
94 | (1) |
|
|
94 | (4) |
|
9.2.1 Discrete Base Measure |
|
|
97 | (1) |
|
|
98 | (4) |
|
9.3.1 Continuous Random Measures |
|
|
101 | (1) |
|
|
102 | (5) |
|
9.4.1 Partition Models: Bayesian Histograms |
|
|
102 | (2) |
|
9.4.2 Bayesian Histograms with Equal Bin Widths |
|
|
104 | (3) |
|
10 Nonparametric Regression |
|
|
107 | (14) |
|
10.1 Nonparametric Regression Modelling |
|
|
107 | (1) |
|
|
108 | (5) |
|
|
109 | (1) |
|
|
110 | (3) |
|
|
113 | (3) |
|
10.3.1 Spline Regression with Equally Spaced Knots |
|
|
114 | (2) |
|
10.4 Partition Regression Models |
|
|
116 | (5) |
|
10.4.1 Changepoint Models |
|
|
117 | (2) |
|
10.4.2 Classification and Regression Trees |
|
|
119 | (2) |
|
11 Clustering and Latent Factor Models |
|
|
121 | (16) |
|
|
121 | (7) |
|
11.1.1 Finite Mixture Models |
|
|
122 | (4) |
|
11.1.2 Dirichlet Process Mixture Models |
|
|
126 | (2) |
|
11.2 Mixed-Membership Models |
|
|
128 | (5) |
|
11.2.1 Latent Dirichlet Allocation |
|
|
129 | (2) |
|
11.2.2 Hierarchical Dirichlet Processes |
|
|
131 | (2) |
|
11.3 Latent Factor Models |
|
|
133 | (4) |
|
11.3.1 Stan Implementation |
|
|
134 | (3) |
Appendix A Conjugate Parametric Models |
|
137 | (4) |
Appendix B Solutions to Exercises |
|
141 | (22) |
Glossary |
|
163 | (2) |
References |
|
165 | (2) |
Index |
|
167 | |