Muutke küpsiste eelistusi

E-raamat: Introduction to Biomaterials: Basic Theory with Engineering Applications

(University of Texas, San Antonio), (University of South Dakota), (University of Texas, San Antonio), (University of Texas, San Antonio)
  • Formaat - PDF+DRM
  • Hind: 77,79 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This succinct textbook gives students the perfect introduction to the world of biomaterials, linking the fundamental properties of metals, polymers, ceramics and natural biomaterials to the unique advantages and limitations surrounding their biomedical applications. Clinical concerns such as sterilization, surface modification, cell-biomaterial interactions, drug delivery systems and tissue engineering are discussed in detail, giving students practical insight into the real-world challenges associated with biomaterials engineering; key definitions, equations and concepts are concisely summarised alongside the text, allowing students to quickly and easily identify the most important information; and bringing together elements from across the book, the final chapter discusses modern commercial implants, challenging students to consider future industrial possibilities. Concise enough to be taught in a single semester, and requiring only a basic understanding of biology, this balanced and accessible textbook is the ideal introduction to biomaterials for students of engineering and materials science.

Arvustused

'This is a book that is destined to be a classic in biomaterials education. Written by leading bioengineers and scientists, it can serve not only as a textbook to support a semester-long undergraduate course, but also as an introduction to graduate-level classes. It is a well-written, comprehensive compendium of traditional and also modern knowledge on all aspects of biomaterials, and I am sure that both students and instructors will embrace it and use it widely.' Kyriacos A. Athanasiou, University of California, Davis 'This well compiled book is readily accessible to a wide readership, as the authors do not assume background knowledge of any particular field of study. Moreover, Introduction to Biomaterials strikes a pleasing balance between life science and engineering, so that both scientific principles and engineering applications are presented with a view to blending theory and practice.' Andrew Taylor-Robinson, The Biologist

Muu info

A succinct introduction to the field of biomaterials engineering, packed with practical insights.
Preface xvii
1 Introduction 1(18)
1.1 Definitions
5(2)
1.2 Changing focus
7(1)
1.3 Types of bonds in materials
7(4)
1.3.1 Ionic bonds
7(1)
1.3.2 Metallic bonds
8(1)
1.3.3 Covalent bonds
9(1)
1.3.4 Secondary bonds
10(1)
1.4 Types of materials
11(4)
1.4.1 Ceramics
11(1)
1.4.2 Metals
12(2)
1.4.3 Polymers
14(1)
1.4.4 Composites
14(1)
1.5 Impact of biomaterials
15(1)
1.6 Future of biomaterials
16(1)
1.7 Summary
17(1)
References
17(1)
Problems
18(1)
2 Basic properties of materials 19(29)
2.1 Mechanical properties
20(15)
2.1.1 Tensile testing
21(5)
2.1.2 Compressive testing
26(1)
2.1.3 Shear testing
27(1)
2.1.4 Bend or flexural tests
27(1)
2.1.5 Viscoelastic behavior
28(2)
2.1.6 Ductile and brittle fracture
30(2)
2.1.7 Stress concentration
32(1)
2.1.8 Fracture toughness
33(1)
2.1.9 Fatigue
34(1)
2.2 Electrochemical properties
35(8)
2.2.1 Corrosion
35(2)
2.2.2 Types of corrosion
37(6)
2.3 Surface properties
43(2)
2.3.1 Contact angle
44(1)
2.3.2 Hardness
44(1)
2.4 Summary
45(1)
Suggested reading
45(1)
Problems
46(2)
3 Biological systems 48(26)
3.1 The biological environment
48(3)
3.2 Genetic regulation and control systems
51(1)
3.3 The plasma membrane
51(2)
3.3.1 Membranes are phospholipid layers
52(1)
3.4 Cytoskeleton and motility
53(2)
3.5 Cell to cell communication pathways
55(2)
3.6 Cell junctions
57(5)
3.6.1 Tight junctions
57(2)
3.6.2 Gap junctions
59(2)
3.6.3 Adherens and desmosomes
61(1)
3.7 Cell signaling pathways
62(6)
3.7.1 Receptors as signaling sensors
63(1)
3.7.2 Receptor classes
64(2)
3.7.3 Second messengers and their activation/deactivation
66(2)
3.8 Biological testing techniques
68(4)
3.8.1 Probe and labeling technologies
68(1)
3.8.2 Examination of gene expression
69(1)
3.8.3 The plasma membrane
69(1)
3.8.4 Cytoskeleton and motility
70(1)
3.8.5 Communication between cells
71(1)
3.8.6 Mapping intracellular signaling
72(1)
3.9 Summary
72(1)
Suggested reading
73(1)
Problems
73(1)
4 Characterization of biomaterials 74(39)
4.1 Contact angle
75(5)
4.2 Infrared spectroscopy
80(7)
4.2.1 Attenuated total reflection (ATR)
83(2)
4.2.2 Specular reflectance
85(1)
4.2.3 Infrared reflection absorption spectroscopy (IRRAS)
85(1)
4.2.4 Diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS)
85(2)
4.3 X-ray photoelectron spectroscopy
87(4)
4.4 Secondary ion mass spectrometry
91(3)
4.5 Atomic force microscopy
94(4)
4.6 Scanning electron microscopy
98(2)
4.7 Transmission electron microscopy
100(3)
4.8 X-ray diffraction (XRD)
103(3)
4.9 Chromatography
106(4)
4.9.1 High performance liquid chromatography (HPLC)
106(2)
4.9.2 Gel permeation chromatography (GPC)
108(2)
4.10 Summary
110(1)
Suggested reading
110(1)
References
111(1)
Problems
111(2)
5 Metals: structure and properties 113(21)
5.1 Titanium and its alloys
114(5)
5.1.1 Classification of Ti and its alloys based on crystallographic forms
116(3)
5.1.2 Surface properties
119(1)
5.1.3 Applications
119(1)
5.2 Stainless steel
119(4)
5.2.1 Martensitic stainless steels
120(1)
5.2.2 Ferritic stainless steels
120(1)
5.2.3 Austenitic stainless steels
120(2)
5.2.4 Duplex stainless steels
122(1)
5.2.5 Recent developments in stainless steel alloys
122(1)
5.3 Cobalt-chromium alloys
123(3)
5.3.1 ASTM F75
123(2)
5.3.2 ASTM F799
125(1)
5.3.3 ASTM F90
125(1)
5.3.4 ASTM F562
126(1)
5.4 Nitinol
126(2)
5.5 Tantalum
128(1)
5.6 Magnesium
129(1)
5.7 Summary
130(1)
References
131(1)
Suggested reading
132(1)
Problems
132(2)
6 Polymers 134(31)
6.1 Molecular structure of polymers
135(6)
6.1.1 Molecular weight
139(2)
6.2 Types of polymerization
141(1)
6.3 Physical states of polymers
142(4)
6.3.1 Amorphous phase
142(2)
6.3.2 Crystalline phase
144(2)
6.4 Common polymeric biomaterials
146(9)
6.4.1 Polyethylene
146(1)
6.4.2 Polymethylmethacrylate (PMMA)
147(3)
6.4.3 Polylactic acid (PLA) and polyglycolic acid (PGA)
150(2)
6.4.4 Polycaprolactone (PCL)
152(1)
6.4.5 Other biodegradable polymers
153(1)
6.4.6 Polyurethanes
153(1)
6.4.7 Silicones
154(1)
6.5 Hydrogels
155(6)
6.5.1 Synthesis of hydrogels
159(1)
6.5.2 Properties of hydrogels
160(1)
6.5.3 Applications
160(1)
6.6 Nanopolymers
161(1)
6.7 Summary
162(1)
References
163(1)
Suggested reading
163(1)
Problems
163(2)
7 Ceramics 165(33)
7.1 General properties
166(1)
7.2 Classifications
167(2)
7.2.1 Classification based on form
167(1)
7.2.2 Classification based on composition
168(1)
7.2.3 Classification based on reactivity
169(1)
7.3 Bioceramics
169(20)
7.3.1 Silicate glass
170(4)
7.3.2 Alumina (Al2O3)
174(3)
7.3.3 Zirconia (ZrO2)
177(2)
7.3.4 Carbon
179(1)
7.3.5 Calcium phosphates (CaP)
180(3)
7.3.6 Hydroxyapatite (HA)
183(3)
7.3.7 Tricalcium phosphate (TCP)
186(1)
7.3.8 Calcium sulfate (CaSO4•H2O)
187(1)
7.3.9 Bioactive glass
188(1)
7.4 Nanoceramics
189(6)
7.5 Summary
195(1)
References
196(1)
Suggested reading
196(1)
Problems
196(2)
8 Natural biomaterials 198(35)
8.1 Collagen
199(5)
8.2 Elastin
204(3)
8.3 Silk
207(3)
8.4 Chitosan
210(3)
8.5 Cellulose
213(4)
8.6 Alginate
217(6)
8.7 Hyaluronan
223(3)
8.8 Chondroitin sulfate
226(2)
8.9 Coral
228(3)
8.10 Summary
231(1)
References
231(1)
Suggested reading
231(1)
Problems
232(1)
9 Surface modification 233(49)
9.1 Abrasive blasting
234(3)
9.2 Plasma glow discharge treatments
237(6)
9.2.1 Direct current glow discharge
239(1)
9.2.2 Alternating current glow discharge
240(1)
9.2.3 Capacitively coupled radiofrequency glow discharge
241(1)
9.2.4 Inductively coupled radiofrequency glow discharge
242(1)
9.3 Thermal spraying
243(8)
9.4 Physical vapor deposition (PVD)
251(10)
9.4.1 Evaporative deposition
252(1)
9.4.2 Pulsed laser deposition
253(1)
9.4.3 Sputter deposition
254(7)
9.5 Chemical vapor deposition (CVD)
261(3)
9.6 Grafting
264(2)
9.7 Self-assembled monolayer (SAM)
266(8)
9.7.1 Patterning of self-assembled monolayers
271(3)
9.8 Layer-by-layer (LbL) assembly
274(5)
9.8.1 Different layer-by-layer (LbL) assembly techniques
277(2)
9.9 Summary
279(1)
References
279(1)
Suggested reading
280(1)
Problems
280(2)
10 Sterilization of biomedical implants 282(13)
10.1 Common terminology
282(1)
10.2 Steam sterilization
283(2)
10.3 Ethylene oxide sterilization
285(2)
10.4 Gamma radiation sterilization
287(2)
10.5 Other sterilization methods
289(2)
10.5.1 Dry heat sterilization
289(1)
10.5.2 Formaldehyde and glutaraldehyde treatments
290(1)
10.5.3 Phenolic and hypochloride solution treatments
290(1)
10.5.4 Ultraviolet (UV) radiation
290(1)
10.5.5 Electron beam sterilization
291(1)
10.6 Recently developed methods
291(1)
10.6.1 Low temperature gas plasma treatment
291(1)
10.6.2 Gaseous chlorine dioxide treatment
292(1)
10.7 Summary
292(1)
References
293(1)
Suggested reading
293(1)
Problems
294(1)
11 Cell-biomaterial interactions 295(26)
11.1 The extracellular environment
297(12)
11.2 Extracellular matrix mimics
309(1)
11.3 Cell interactions with non-cellular substrates
309(5)
11.4 Biocompatibility testing and techniques
314(5)
11.4.1 Immunostaining techniques for studying cell-ECM interactions
316(1)
11.4.2 Profiling a cell line for its ECM binding characteristics
317(1)
11.4.3 Immunoprecipitation and Western blotting
318(1)
11.5 Summary
319(1)
Reference
319(1)
Suggested reading
319(1)
Problems
320(1)
12 Drug delivery systems 321(20)
12.1 Diffusion controlled drug delivery systems
323(2)
12.1.1 Membrane controlled reservoir systems
323(1)
12.1.2 Monolithic matrix systems
324(1)
12.2 Water penetration controlled drug delivery systems
325(3)
12.2.1 Osmotic pressure controlled drug delivery systems
326(1)
12.2.2 Swelling controlled drug delivery system
327(1)
12.3 Chemically controlled drug delivery systems
328(3)
12.3.1 Polymer-drug dispersion systems
328(1)
12.3.2 Polymer-drug conjugate systems
329(2)
12.4 Responsive drug delivery systems
331(4)
12.4.1 Temperature-responsive drug delivery systems
331(1)
12.4.2 pH-responsive drug delivery systems
332(1)
12.4.3 Solvent-responsive drug delivery systems
333(1)
12.4.4 Ultrasound-responsive drug delivery systems
333(1)
12.4.5 Electrically responsive drug delivery systems
334(1)
12.4.6 Magnetic-sensitive drug delivery systems
334(1)
12.5 Particulate systems
335(2)
12.5.1 Polymeric microparticles
335(1)
12.5.2 Polymeric micelles
336(1)
12.5.3 Liposomes
336(1)
12.6 Summary
337(2)
References
339(1)
Suggested reading
339(1)
Problems
340(1)
13 Tissue engineering 341(34)
13.1 Tissue engineering approaches
342(2)
13.1.1 Assessment of medical need
342(1)
13.1.2 Selecting a tissue engineering strategy
343(1)
13.2 Cells
344(5)
13.2.1 Stem cells
345(2)
13.2.2 Biopreservation of cells
347(2)
13.3 Scaffold properties
349(1)
13.4 Fabrication techniques for polymeric scaffolds
350(4)
13.4.1 Solvent casting and particulate leaching
350(1)
13.4.2 Electrospinning
350(1)
13.4.3 Solid free form fabrication (SFFF)
351(3)
13.5 Fabrication of natural polymer scaffolds
354(3)
13.6 Fabrication techniques for ceramic scaffolds
357(1)
13.6.1 Template sponge coating
357(1)
13.6.2 Non-sintering techniques
357(1)
13.7 Assessment of scaffold architecture
358(3)
13.8 Cell seeded scaffolds
361(6)
13.8.1 Cell culture bioreactors
361(2)
13.8.2 Cell seeding
363(1)
13.8.3 Growth factors
364(2)
13.8.4 Mechanical modulation
366(1)
13.9 Assessment of cell and tissue properties
367(5)
13.9.1 Cellular properties
367(4)
13.9.2 Tissue properties
371(1)
13.10 Challenges in tissue engineering
372(1)
13.11 Summary
373(1)
References
373(1)
Suggested reading
373(1)
Problems
374(1)
14 Clinical applications 375(24)
14.1 Cardiovascular assist devices
376(2)
14.2 Cardiovascular stents
378(3)
14.3 Dental restoration
381(3)
14.4 Dental implants
384(2)
14.5 Neural prostheses
386(1)
14.6 Opthalmology
387(3)
14.7 Orthopedic implants
390(3)
14.8 Renal
393(1)
14.9 Skin applications
394(3)
14.10 Summary
397(1)
Additional reading
397(1)
Problems
397(2)
Index 399
C. M. Agrawal is the Vice President for Research at the University of Texas at San Antonio, and the Peter Flawn Professor of Biomedical Engineering, specializing in orthopaedic and cardiovascular biomaterials and implants. He is a member of the International College of Fellows of Biomaterials Science and Engineering, a Fellow of the American Institute for Medical and Biological Engineering, a former President of the Society for Biomaterials, and was awarded the 2010 Julio Palmaz Award for Innovation in Healthcare and the Biosciences. J. L. Ong is Chair of the Department of Biomedical Engineering and the USAA Foundation Distinguished Professor at the University of Texas, San Antonio, where his research focuses on modification and characterization of biomaterials surfaces for dental and orthopaedic applications, tissue engineering ceramic scaffolds, protein-biomaterial interactions and bone-biomaterial interactions. He is a Fellow of the American Institute for Medical and Biological Engineering. Mark Appleford is an Assistant Professor of Biomedical Engineering at the University of Texas, San Antonio, focusing on tissue-biomaterial interactions, cellular engineering, reconstructive tissue engineering, and biocompatibility. Gopinath Mani is an Assistant Professor of Biomedical Engineering at the University of South Dakota, focusing on surface modification and characterization of biomaterials, nanomaterials and nanomedicine, biodegradable metals and drug delivery systems. He is the Program Chair for the Surface Characterization and Modification Special Interest Group of the Society for Biomaterials, and has developed and taught numerous graduate-level programs in biomaterials engineering.