Muutke küpsiste eelistusi

E-raamat: Introduction to Central Simple Algebras and Their Applications to Wireless Communication

Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 129,95 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Central simple algebras arise naturally in many areas of mathematics. They are closely connected with ring theory, but are also important in representation theory, algebraic geometry and number theory. Recently, surprising applications of the theory of central simple algebras have arisen in the context of coding for wireless communication. The exposition in the book takes advantage of this serendipity, presenting an introduction to the theory of central simple algebras intertwined with its applications to coding theory. Many results or constructions from the standard theory are presented in classical form, but with a focus on explicit techniques and examples, often from coding theory.

Topics covered include quaternion algebras, splitting fields, the Skolem-Noether Theorem, the Brauer group, crossed products, cyclic algebras and algebras with a unitary involution. Code constructions give the opportunity for many examples and explicit computations. This book provides an introduction to the theory of central algebras accessible to graduate students, while also presenting topics in coding theory for wireless communication for a mathematical audience. It is also suitable for coding theorists interested in learning how division algebras may be useful for coding in wireless communication.
Foreword vii
Introduction 1(2)
Chapter I Central simple algebras 3(18)
I.1 Preliminaries on k-algebras
3(4)
I.2 Central simple algebras: the basics
7(4)
I.3 Introducing space-time coding
11(7)
Exercises
18(3)
Chapter II Quaternion algebras 21(10)
II.1 Properties of quaternion algebras
21(6)
II.2 Hamilton quaternions
27(1)
II.3 Quaternion algebras based codes
28(2)
Exercises
30(1)
Chapter III Fundamental results on central simple algebras 31(22)
III.1 Operations on central simple algebras
31(4)
III.2 Simple modules
35(8)
III.3 Skolem-Noether's theorem
43(2)
III.4 Wedderburn's theorem
45(2)
III.5 The centralizer theorem
47(3)
Exercises
50(3)
Chapter IV Splitting fields of central simple algebras 53(26)
IV.1 Splitting fields
53(7)
IV.2 The reduced characteristic polynomial
60(8)
IV.3 The minimum determinant of a code
68(8)
Exercises
76(3)
Chapter V The Brauer group of a field 79(22)
V.1 Definition of the Brauer group
79(3)
V.2 Brauer equivalence and bimodules
82(9)
V.3 Index and exponent
91(7)
Exercises
98(3)
Chapter VI Crossed products 101(28)
VI.1 Definition of crossed products
101(7)
VI.2 Some properties of crossed products
108(10)
VI.3 Shaping and crossed products based codes
118(8)
Exercises
126(3)
Chapter VII Cyclic algebras 129(36)
VII.1 Cyclic algebras
129(8)
VII.2 Central simple algebras over local fields
137(2)
VII.3 Central simple algebras over number fields
139(2)
VII.4 Cyclic algebras of prime degree over number fields
141(3)
VII.5 Examples
144(6)
VII.6 Cyclic algebras and perfect codes
150(6)
VII.7 Optimality of some perfect codes
156(7)
Exercises
163(2)
Chapter VIII Central simple algebras of degree 4 165(24)
VIII.1 A theorem of Albert
165(3)
VIII.2 Structure of central simple algebras of degree 4
168(8)
VIII.3 Albert's Theorem
176(2)
VIII.4 Codes over biquadratic crossed products
178(9)
Exercises
187(2)
Chapter IX Central simple algebras with unitary involutions 189(42)
IX.1 Basic concepts
189(2)
IX.2 The corestriction algebra
191(7)
IX.3 Existence of unitary involutions
198(5)
IX.4 Unitary involutions on crossed products
203(6)
IX.5 Unitary space-time coding
209(19)
Exercises
228(3)
Appendix A Tensor products 231(18)
A.1 Tensor product of vector spaces
231(4)
A.2 Basic properties of the tensor product
235(7)
A.3 Tensor product of k-algebras
242(7)
Appendix B A glimpse of number theory 249(16)
B.1 Absolute values
249(4)
B.2 Factorization of ideals in number fields
253(9)
B.3 Absolute values on number fields and completion
262(3)
Appendix C Complex ideal lattices 265(6)
C.1 Generalities on hermitian lattices
265(1)
C.2 Complex ideal lattices
266(5)
Bibliography 271(4)
Index 275
Gregory Berhuy, Universite Joseph Fourier, Grenoble, France

Frederique Oggier, Nanyang Technological University, Singapore, Singapore