Muutke küpsiste eelistusi

E-raamat: Introduction to Certificateless Cryptography

(Lulea University of Technology, Sweden), (University of Electronic Science and Technology of China, Chengdu, Sichuan, People's Republic of China), (University of Electronic Science and Technology of China)
  • Formaat: 338 pages
  • Ilmumisaeg: 19-Sep-2016
  • Kirjastus: CRC Press Inc
  • Keel: eng
  • ISBN-13: 9781482248616
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 58,49 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 338 pages
  • Ilmumisaeg: 19-Sep-2016
  • Kirjastus: CRC Press Inc
  • Keel: eng
  • ISBN-13: 9781482248616
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

As an intermediate model between conventional PKC and ID-PKC, CL-PKC can avoid the heavy overhead of certificate management in traditional PKC as well as the key escrow problem in ID-PKC altogether. Since the introduction of CL-PKC, many concrete constructions, security models, and applications have been proposed during the last decade. Differing from the other books on the market, this one provides rigorous treatment of CL-PKC.
Definitions, precise assumptions, and rigorous proofs of security are provided in a manner that makes them easy to understand.

List of Figures xiii
List of Tables xv
Preface xvii
Acknowledgments xxi
List of Abbreviations xxiii
Section I: Setting the Stage
Chapter 1 Avoiding Key Escrow
3(10)
1.1 A Brief Introduction To Symmetric Cryptography
3(1)
1.2 Setting Of Asymmetric PKC
4(4)
1.2.1 Traditional PKC
5(1)
1.2.2 Identity-Based PKC
6(2)
1.3 Why Should I Care About Certificateless PKC
8(3)
1.4 Plan Of The Book
11(2)
Chapter 2 Foundations
13(46)
2.1 Introduction
13(1)
2.2 Mathematical Concepts And Properties
13(22)
2.2.1 Concepts from Number Theory
13(4)
2.2.1.1 Primes and Divisibility
13(2)
2.2.1.2 Modular Arithmetic
15(2)
2.2.2 Concepts from Abstract Algebra
17(12)
2.2.2.1 Group Theory
17(5)
2.2.2.2 Group (Z*N, x)
22(2)
2.2.2.3 Chinese Remainder Theorem
24(3)
2.2.2.4 Cyclic Groups and Generators
27(2)
2.2.3 Elliptic-Curve Groups
29(6)
2.2.4 Bilinear Pairing
35(1)
2.3 Public-Key Cryptography
35(13)
2.3.1 Public-Key Encryption Algorithms
37(5)
2.3.1.1 Framework of Public-Key Encryption
37(1)
2.3.1.2 RSA Encryption Scheme
38(1)
2.3.1.3 ElGamal Encryption Scheme
38(1)
2.3.1.4 Framework of ID-Based Encryption Scheme
39(1)
2.3.1.5 Boneh-Franklin IBE
40(2)
2.3.2 Signature Algorithms
42(6)
2.3.2.1 Framework of Digital Signature
42(1)
2.3.2.2 RSA Signature Scheme
42(1)
2.3.2.3 ElGamal Signature Scheme
43(1)
2.3.2.4 Schnorr Signature Scheme
44(1)
2.3.2.5 Digital Signature Standard
44(1)
2.3.2.6 Framework of ID-Based Signature Scheme
45(1)
2.3.2.7 Cha-Cheon Identity-Based Signature
46(1)
2.3.2.8 Bellare-Namprempre-Neven IBS
47(1)
2.4 Provable Security
48(11)
2.4.1 Public-Key Encryption
49(3)
2.4.1.1 Security against Chosen-Plaintext Attacks
50(1)
2.4.1.2 Security against Chosen-Ciphertext Attacks
51(1)
2.4.2 ID-Based Encryption
52(2)
2.4.2.1 Security against Chosen-Ciphertext-and-Identity Attacks
52(2)
2.4.3 Digital Signature
54(1)
2.4.3.1 Security against Chosen-Message Attacks
54(1)
2.4.4 ID-Based Signature
55(4)
2.4.4.1 Security against Chosen-Message-and-Identity Attacks
55(4)
Section II: CL-PKC without Random Oracles
Chapter 3 CLE Secure in the Standard Model
59(42)
3.1 Introduction
59(1)
3.2 Modeling Certificateless Public-Key Encryption Schemes
59(4)
3.2.1 Al-Riyami and Paterson Formulation
59(2)
3.2.2 Equivalence to the Original Seven-Algorithm Framework
61(1)
3.2.3 Baek, Safavi-Naini, and Susilo's Framework
62(1)
3.3 Security Definitions For Certificateless Public-Key Encryption Schemes
63(14)
3.3.1 General Security Model
64(2)
3.3.2 Type I Attackers
66(7)
3.3.2.1 Security against a Normal Type I Adversary
66(3)
3.3.2.2 Security against a Strong Type I Adversary
69(2)
3.3.2.3 Security against a Super Type I Adversary
71(2)
3.3.3 Type II Attackers
73(2)
3.3.4 Malicious-but-Passive KGC Attacks
75(2)
3.4 Surveying Certificateless Public-Key Encryption Schemes
77(9)
3.4.1 Concrete Constructions of CLE Schemes
77(4)
3.4.2 Generic Constructions of CLE Schemes
81(1)
3.4.3 Pairing-Free Constructions
82(1)
3.4.4 Constructions Secure against Malicious KGC Attacks
83(1)
3.4.5 Extensions of CLE Schemes
84(2)
3.5 Concrete Construction
86(15)
3.5.1 Dent-Libert-Paterson CL-PKE
86(2)
3.5.2 Hwang-Liu-Chow CL-PKE
88(10)
3.5.2.1 Security Analysis
89(9)
3.5.3 Huang-Wong CL-PKE
98(3)
Chapter 4 CLS Secure in the Standard Model
101(28)
4.1 Modeling Certificateless Signature (CLS) Schemes
101(2)
4.1.1 Framework of CLS Schemes
101(1)
4.1.2 Equivalence to the Original Seven-Algorithm Framework
102(1)
4.2 Security Definitions For CLS Schemes
103(10)
4.2.1 Adversaries and Oracles
104(1)
4.2.2 Type I Adversaries
105(6)
4.2.2.1 Security against a Normal Type I Adversary
105(2)
4.2.2.2 Security against a Strong Type I Adversary
107(2)
4.2.2.3 Security against a Super Type I Adversary
109(2)
4.2.3 Type II Adversaries
111(1)
4.2.4 Malicious-but-Passive KGC Attack
112(1)
4.3 Surveying CLS Schemes
113(4)
4.4 Concrete Construction
117(12)
4.4.1 Xiong-Qin-Li's Scheme
117(7)
4.4.1.1 Complexity Assumption
117(1)
4.4.1.2 Concrete Construction
117(2)
4.4.1.3 Security Analysis
119(5)
4.4.2 Yuan-Wang CLS
124(5)
Section III: CL-PKC in Random Oracle Models
Chapter 5 Random Oracle Models
129(6)
5.1 Random Oracle Methodology
129(2)
5.2 Security Proofs In The Random Oracle Model
131(2)
5.3 Controversy About The Random Oracle Model
133(2)
Chapter 6 CLE, CLS, and CL-AKE Secure in Random Oracle Models
135(18)
6.1 Introduction
135(1)
6.2 Al-Riyami-Paterson CLE
135(4)
6.2.1 Concrete Construction
136(3)
6.2.1.1 Basic CLE Scheme
136(1)
6.2.1.2 Full CLE Scheme
137(2)
6.3 Zhang-Zhang CLS
139(7)
6.3.1 Concrete Construction
139(1)
6.3.2 Security Analysis
140(6)
6.4 Zhang Et Al.'s CL-AKA
146(7)
6.4.1 Framework of CL-AKA Protocol
146(1)
6.4.2 Security Definitions
147(3)
6.4.3 Concrete Construction
150(3)
Chapter 7 CL-PKC without Pairings
153(18)
7.1 Introduction
153(1)
7.2 Lai-Kou CLE
154(4)
7.2.1 Concrete Construction
154(1)
7.2.2 Security Analysis
155(3)
7.3 Xiong-Wu-Chen Certificateless Authenticated Key Agreement (CL-AKA)
158(13)
7.3.1 Concrete Construction
159(1)
7.3.2 Modular Approach for Security Proof in Modified Bellare-Rogaway (mBR) Model
160(3)
7.3.2.1 mBR Model
161(1)
7.3.2.2 Kudla and Paterson's Modular Approach
162(1)
7.3.2.3 Hard Problems
163(1)
7.3.3 Security Analysis
163(4)
7.3.4 Performance
167(4)
Section IV: Applications, Extensions, and Related Paradigms
Chapter 8 Applications of CL-PKC
171(42)
8.1 Introduction
171(1)
8.2 Onion Routing
171(7)
8.2.1 Motivation
171(2)
8.2.2 Catalano-Fiore-Gennaro Scheme
173(5)
8.2.2.1 Framework of Onion Routing
173(1)
8.2.2.2 Security of Onion Routing
174(2)
8.2.2.3 Building Blocks
176(1)
8.2.2.4 Concrete Construction
177(1)
8.2.2.5 Security Analysis
177(1)
8.3 Anonymous Remote Authentication For WBANs
178(19)
8.3.1 Motivation
178(2)
8.3.2 Xiong's Protocol
180(17)
8.3.2.1 Notations
180(1)
8.3.2.2 System Model
181(1)
8.3.2.3 Objectives
182(1)
8.3.2.4 Concrete Construction
182(4)
8.3.2.5 Security Analysis
186(6)
8.3.2.6 Comparison with Previous Protocols
192(5)
8.4 Secure Data Sharing In Cloud Computing
197(16)
8.4.1 Motivation
197(2)
8.4.2 Qin-Wu-Xiong Scheme
199(14)
8.4.2.1 Formal Definition
199(2)
8.4.2.2 Security Model
201(3)
8.4.2.3 Concrete Construction
204(2)
8.4.2.4 Security Analysis
206(1)
8.4.2.5 Performance Evaluation
207(6)
Chapter 9 Extensions of CL-PKC
213(54)
9.1 Introduction
213(1)
9.2 Certificateless Signcryption
213(10)
9.2.1 Related Work
213(1)
9.2.2 Formal Definition
214(5)
9.2.3 Xiong's Scheme
219(3)
9.2.4 Analysis
222(1)
9.3 Certificateless Aggregate Signature
223(14)
9.3.1 Related Work
223(1)
9.3.2 Formal Definition
224(4)
9.3.3 Xiong-Wu-Chen's Scheme
228(1)
9.3.4 Security Proof
229(8)
9.4 Certificateless Ring Signature
237(17)
9.4.1 Related Work
237(2)
9.4.2 Formal Definition
239(3)
9.4.3 Qin et al.'s Scheme
242(2)
9.4.4 Analysis
244(10)
9.5 Certificateless Threshold Signature
254(13)
9.5.1 Related Work
254(1)
9.5.2 Formal Definition
255(4)
9.5.3 Xiong-Li-Qin Scheme
259(4)
9.5.4 Analysis
263(4)
Chapter 10 Comparisons between CL-PKC, SGC-PKC, and CB-PKC
267(4)
Section V: Future Directions
Chapter 11 Perspectives
271(2)
References 273(34)
Index 307
Hu Xiong, Zhen Qin, Athanasios V. Vasilakos