Muutke küpsiste eelistusi

E-raamat: Introduction to Computational Fluid Dynamics e-book

  • Formaat: 520 pages
  • Ilmumisaeg: 06-Feb-2007
  • Kirjastus: Pearson
  • Keel: eng
  • ISBN-13: 9781405891042
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 59,46 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 520 pages
  • Ilmumisaeg: 06-Feb-2007
  • Kirjastus: Pearson
  • Keel: eng
  • ISBN-13: 9781405891042
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This established, leading textbook, is suitable for courses in CFD. The new edition covers new techniques and methods, as well as considerable expansion of the advanced topics and applications (from one to four chapters).

 

This book presents the fundamentals of computational fluid mechanics for the novice user. It provides a thorough yet user-friendly introduction to the governing equations and boundary conditions of viscous fluid flows, turbulence and its modelling, and the finite volume method of solving flow problems on computers.





 

Muu info

This comprehensive text presents the fundamentals of Computer Fluid Dynamics simply and clearly.
Preface xi
Acknowledgements xiii
Introduction
1(8)
What is CFD?
1(1)
How does a CFD code work?
2(2)
Problem solving with CFD
4(2)
Scope of this book
6(3)
Conservation laws of fluid motion and boundary conditions
9(31)
Governing equations of fluid flow and heat transfer
9(11)
Mass conservation in three dimensions
10(2)
Rates of change following a fluid particle and for a fluid element
12(2)
Momentum equation in three dimensions
14(2)
Energy equation in three dimensions
16(4)
Equations of state
20(1)
Navier-Stokes equations for a Newtonian fluid
21(3)
Conservative form of the governing equations of fluid flow
24(1)
Differential and integral forms of the general transport equations
24(2)
Classification of physical behaviours
26(3)
The role of characteristics in hyperbolic equations
29(3)
Classification method for simple PDEs
32(1)
Classification of fluid flow equations
33(2)
Auxiliary conditions for viscous fluid flow equations
35(1)
Problems in transonic and supersonic compressible flows
36(2)
Summary
38(2)
Turbulence and its modelling
40(75)
What is turbulence?
40(4)
Transition from laminar to turbulent flow
44(5)
Descriptors of turbulent flow
49(3)
Characteristics of simple turbulent flows
52(9)
Free turbulent flows
53(4)
Flat plate boundary layer and pipe flow
57(4)
Summary
61(1)
The effect of turbulent fluctuations on properties of the mean flow
61(4)
Turbulent flow calculations
65(1)
Reynolds-averaged Navier-Stokes equations and classical turbulence models
66(32)
Mixing length model
69(3)
The k-ε model
72(8)
Reynolds stress equation models
80(5)
Advanced turbulence models
85(12)
Closing remarks - RANS turbulence models
97(1)
Large eddy simulation
98(12)
Spacial filtering of unsteady Navier-Stokes equations
98(4)
Smagorinksy-Lilly SGS model
102(2)
Higher-order SGS models
104(1)
Advanced SGS models
105(1)
Initial and boundary conditions for LES
106(2)
LES applications in flows with complex geometry
108(1)
General comments on performance of LES
109(1)
Direct numerical simulation
110(3)
Numerical issues in DNS
111(2)
Some achievements of DNS
113(1)
Summary
113(2)
The finite volume method for diffusion problems
115(19)
Introduction
115(1)
Finite volume method for one-dimensional steady state diffusion
115(3)
Worked examples: one-dimensional steady state diffusion
118(11)
Finite volume method for two-dimensional diffusion problems
129(2)
Finite volume method for three-dimensional diffusion problems
131(1)
Summary
132(2)
The finite volume method for convection---diffusion problems
134(45)
Introduction
134(1)
Steady one-dimensional convection and diffusion
135(1)
The central differencing scheme
136(5)
Properties of discretisation schemes
141(4)
Conservativeness
141(2)
Boundedness
143(1)
Transportiveness
143(2)
Assessment of the central differencing scheme for convection-diffusion problems
145(1)
The upwind differencing scheme
146(5)
Assessment of the upwind differencing scheme
149(2)
The hybrid differencing scheme
151(4)
Assessment of the hybrid differencing scheme
154(1)
Hybrid differencing scheme for multi-dimensional convection-diffusion
154(1)
The power-law scheme
155(1)
Higher-order differencing schemes for convection-diffusion problems
156(8)
Quadratic upwind differencing scheme: the QUICK scheme
156(6)
Assessment of the QUICK scheme
162(1)
Stability problems of the QUICK scheme and remedies
163(1)
General comments on the QUICK differencing scheme
164(1)
TVD schemes
164(12)
Generalisation of upwind-biased discretisation schemes
165(2)
Total variation and TVD schemes
167(1)
Criteria for TVD schemes
168(2)
Flux limiter functions
170(1)
Implementation of TVD schemes
171(4)
Evaluation of TVD schemes
175(1)
Summary
176(3)
Solution algorithms for pressure-velocity coupling in steady flows
179(33)
Introduction
179(1)
The staggered grid
180(3)
The momentum equations
183(3)
The SIMPLE algorithm
186(4)
Assembly of a complete method
190(1)
The SIMPLER algorithm
191(2)
The SIMPLEC algorithm
193(1)
The PISO algorithm
193(3)
General comments on SIMPLE, SIMPLER, SIMPLEC and PISO
196(1)
Worked examples of the SIMPLE algorithm
197(14)
Summary
211(1)
Solution of discretised equations
212(31)
Introduction
212(1)
The TDMA
213(2)
Application of the TDMA to two-dimensional problems
215(1)
Application of the TDMA to three-dimensional problems
215(1)
Examples
216(7)
Closing remarks
222(1)
Point-iterative methods
223(6)
Jacobi iteration method
224(1)
Gauss-Seidel iteration method
225(1)
Relaxation methods
226(3)
Multigrid techniques
229(13)
An outline of a multigrid procedure
231(1)
An illustrative example
232(7)
Multigrid cycles
239(2)
Grid generation for the multigrid method
241(1)
Summary
242(1)
The finite volume method for unsteady flows
243(24)
Introduction
243(1)
One-dimensional unsteady heat conduction
243(6)
Explicit scheme
246(1)
Crank-Nicolson scheme
247(1)
The fully implicit scheme
248(1)
Illustrative examples
249(7)
Implicit method for two- and three-dimensional problems
256(1)
Discretisation of transient convection-diffusion equation
257(1)
Worked example of transient convection-diffusion using QUICK differencing
258(4)
Solution procedures for unsteady flow calculations
262(3)
Transient SIMPLE
262(1)
The transient PISO algorithm
263(2)
Steady state calculations using the pseudo-transient approach
265(1)
A brief note on other transient schemes
265(1)
Summary
266(1)
Implementation of boundary conditions
267(18)
Introduction
267(1)
Inlet boundary conditions
268(3)
Outlet boundary conditions
271(2)
Wall boundary conditions
273(6)
The constant pressure boundary condition
279(1)
Symmetry boundary condition
280(1)
Periodic or cyclic boundary condition
281(1)
Potential pitfalls and final remarks
281(4)
Errors and uncertainty in CFD modelling
285(19)
Errors and uncertainty in CFD
285(1)
Numerical errors
286(3)
Input uncertainty
289(2)
Physical model uncertainty
291(2)
Verification and validation
293(5)
Guidelines for best practice in CFD
298(2)
Reporting/documentation of CFD simulation inputs and results
300(2)
Summary
302(2)
Methods for dealing with complex geometries
304(39)
Introduction
304(1)
Body-fitted co-ordinate grids for complex geometries
305(1)
Catesian vs. curvilinear grids - an example
306(2)
Curvilinear grids - difficulties
308(2)
Block-structured grids
310(1)
Unstructured grids
311(1)
Discretisation in unstructured grids
312(4)
Discretisation of the diffusion term
316(4)
Discretisation of the convective term
320(4)
Treatment of source terms
324(1)
Assembly of discretised equations
325(4)
Example calculations with unstructured grids
329(7)
Pressure---velocity coupling in unstructured meshes
336(1)
Staggered vs. co-located grid arrangements
337(3)
Extension of the face velocity interpolation method to unstructured meshes
340(2)
Summary
342(1)
CFD modelling of combustion
343(74)
Introduction
343(1)
Application of the first law of thermodynamics to a combustion system
344(1)
Enthalpy of formation
345(1)
Some important relationships and properties of gaseous mixtures
346(2)
Stoichiometry
348(1)
Equivalence ratio
348(1)
Adiabatic flame temperature
349(2)
Equilibrium and dissociation
351(4)
Mechanisms of combustion and chemical kinetics
355(1)
Overall reactions and intermediate reactions
355(1)
Reaction rate
356(5)
Detailed mechanisms
361(1)
Reduced mechanisms
361(2)
Governing equations for combusting flows
363(4)
The simple chemical reacting system (SCRS)
367(3)
Modelling of a laminar diffusion flame - an example
370(6)
CFD calculation of turbulent non-premixed combustion
376(4)
SCRS model for turbulent combustion
380(1)
Probability density function approach
380(2)
Beta pdf
382(2)
The chemical equilibrium model
384(1)
Eddy break-up model of combustion
385(3)
Eddy dissipation concept
388(1)
Laminar flamelet model
388(2)
Generation of laminar flamelet libraries
390(9)
Statistics of the non-equilibrium parameter
399(1)
Pollutant formation in combustion
400(1)
Modelling of thermal NO formation in combustion
401(1)
Flamelet-based NO modelling
402(1)
An example to illustrate laminar flamelet modelling and NO modelling of a turbulent flame
403(12)
Other models for non-premixed combustion
415(1)
Modelling of premixed combustion
415(1)
Summary
416(1)
Numerical calculation of radiative heat transfer
417(28)
Introduction
417(7)
Governing equations of radiative heat transfer
424(2)
Solution methods
426(1)
Four popular radiation calculation techniques suitable for CFD
427(10)
The Monte Carlo method
427(2)
The discrete transfer method
429(4)
Ray tracing
433(1)
The discrete ordinates method
433(4)
The finite volume method
437(1)
Illustrative examples
437(5)
Calculation of radiative properties in gaseous mixtures
442(1)
Summary
443(2)
Appendix A Accuracy of a flow simulation 445(3)
Appendix B Non-uniform grids 448(2)
Appendix C Calculation of source terms 450(2)
Appendix D Limiter functions used in
Chapter 5
452(4)
Appendix E Derivation of one-dimensional governing equations for steady, incompressible flow through a planar nozzle 456(3)
Appendix F Alternative derivation for the term (n. grad oi) in
Chapter 11
459(3)
Appendix G Some examples 462(10)
Bibliography 472(23)
Index 495