Preface |
|
xvii | |
|
Chapter 1 Introduction to modelling |
|
|
1 | (28) |
|
|
1 | (2) |
|
|
2 | (1) |
|
|
3 | (4) |
|
1.2.1 Why model biological systems? |
|
|
5 | (1) |
|
1.2.2 Why systems biology? |
|
|
6 | (1) |
|
1.3 Challenges In Modelling Biological Systems |
|
|
7 | (2) |
|
1.4 The Practiceofmodelling |
|
|
9 | (10) |
|
|
10 | (1) |
|
|
11 | (1) |
|
1.4.3 Modelling paradigms |
|
|
11 | (2) |
|
|
13 | (4) |
|
1.4.5 Model analysis, debugging and (in)validation |
|
|
17 | (1) |
|
1.4.6 Simulating the model |
|
|
18 | (1) |
|
|
19 | (3) |
|
1.5.1 Lotka-Volterra predator-prey model |
|
|
19 | (1) |
|
1.5.2 SIR model: A classic example |
|
|
20 | (2) |
|
|
22 | (7) |
|
1.6.1 Clarity of scope and objectives |
|
|
22 | (1) |
|
1.6.2 The breakdown of assumptions |
|
|
22 | (1) |
|
1.6.3 Is my model fit for purpose? |
|
|
23 | (1) |
|
1.6.4 Handling uncertainties |
|
|
23 | (1) |
|
|
23 | (1) |
|
|
24 | (2) |
|
|
26 | (3) |
|
|
|
Chapter 2 Introduction to graph theory |
|
|
29 | (28) |
|
|
29 | (3) |
|
2.1.1 History of graph theory |
|
|
29 | (2) |
|
|
31 | (1) |
|
|
32 | (1) |
|
|
33 | (6) |
|
2.3.1 Simple vs. non-simple graphs |
|
|
34 | (1) |
|
2.3.2 Directed vs. undirected graphs |
|
|
34 | (1) |
|
2.3.3 Weighted vs. unweighted graphs |
|
|
35 | (1) |
|
|
35 | (3) |
|
|
38 | (1) |
|
2.4 Computational Representations Ofcraphs |
|
|
39 | (3) |
|
|
39 | (1) |
|
|
39 | (2) |
|
2.4.3 The Laplacian matrix |
|
|
41 | (1) |
|
2.5 Graph Representations Of Biological Networks |
|
|
42 | (7) |
|
2.5.1 Networks of protein interactions and functional associations |
|
|
42 | (1) |
|
2.5.2 Signalling networks |
|
|
43 | (2) |
|
2.5.3 Protein structure networks |
|
|
45 | (1) |
|
2.5.4 Gene regulatory networks |
|
|
45 | (1) |
|
|
46 | (3) |
|
2.6 Common Challenges & Troubleshooting |
|
|
49 | (2) |
|
2.6.1 Choosing a representation |
|
|
49 | (2) |
|
2.6.2 Loading and creating graphs |
|
|
51 | (1) |
|
|
51 | (6) |
|
|
52 | (2) |
|
|
54 | (2) |
|
|
56 | (1) |
|
Chapter 3 Structure of networks |
|
|
57 | (34) |
|
|
57 | (9) |
|
3.1.1 Fundamental parameters |
|
|
58 | (4) |
|
3.1.2 Measures of centrality |
|
|
62 | (3) |
|
3.1.3 Mixing patterns: Assortativity |
|
|
65 | (1) |
|
3.2 Canonical Network Models |
|
|
66 | (9) |
|
3.2.1 Erdos-Renyi (ER) network model |
|
|
67 | (2) |
|
3.2.2 Small-world networks |
|
|
69 | (2) |
|
3.2.3 Scale-free networks |
|
|
71 | (3) |
|
3.2.4 Other models of network generation |
|
|
74 | (1) |
|
|
75 | (4) |
|
3.3.1 Modularity maximisation |
|
|
76 | (1) |
|
3.3.2 Similarity-based clustering |
|
|
77 | (1) |
|
3.3.3 Girvan-Newman algorithm |
|
|
78 | (1) |
|
|
78 | (1) |
|
3.3.5 Community detection in biological networks |
|
|
79 | (1) |
|
|
79 | (2) |
|
3.4.1 Randomising networks |
|
|
80 | (1) |
|
3.5 Perturbations To Networks |
|
|
81 | (2) |
|
3.5.1 Quantifying effects of perturbation |
|
|
82 | (1) |
|
3.5.2 Network structure and attack strategies |
|
|
82 | (1) |
|
|
83 | (1) |
|
3.6.1 Is your network really scale-free? |
|
|
83 | (1) |
|
|
84 | (7) |
|
|
85 | (1) |
|
|
86 | (4) |
|
|
90 | (1) |
|
Chapter 4 Applications of network biology |
|
|
91 | (24) |
|
4.1 Thecentrality-Lethality Hypothesis |
|
|
92 | (1) |
|
4.1.1 Predicting essential genes using network measures |
|
|
92 | (1) |
|
4.2 Networks and modules In Disease |
|
|
93 | (4) |
|
|
93 | (2) |
|
4.2.2 Identification of disease modules |
|
|
95 | (2) |
|
4.2.3 Edgetic perturbation models |
|
|
97 | (1) |
|
4.3 Differential Network Analysis |
|
|
97 | (2) |
|
4.4 Disease Spreading On Networks |
|
|
99 | (2) |
|
4.4.1 Percolation-based models |
|
|
99 | (1) |
|
4.4.2 Agent-based simulations |
|
|
100 | (1) |
|
4.5 Molecular Graphs And Their Applications |
|
|
101 | (3) |
|
|
102 | (2) |
|
4.6 Protein Structure And Conformational Networks |
|
|
104 | (3) |
|
4.6.1 Protein folding pathways |
|
|
104 | (3) |
|
|
107 | (8) |
|
|
107 | (1) |
|
|
108 | (4) |
|
|
112 | (3) |
|
Part II Dynamic Modelling |
|
|
|
Chapter 5 Introduction to dynamic modelling |
|
|
115 | (16) |
|
5.1 Constructing Dynamic Models |
|
|
116 | (1) |
|
5.1.1 Modelling a generic biochemical system |
|
|
116 | (1) |
|
5.2 MASS-Action Kinetic Models |
|
|
117 | (1) |
|
5.3 Modelling Enzyme Kinetics |
|
|
118 | (6) |
|
5.3.1 The Michaelis-Menten model |
|
|
118 | (4) |
|
5.3.2 Co-operativity: Hill kinetics |
|
|
122 | (1) |
|
5.3.3 An Illustrative Example: A Three-Node Oscillator |
|
|
123 | (1) |
|
5.4 Generalised Rate Equations |
|
|
124 | (1) |
|
5.4.1 Biochemical systems theory |
|
|
125 | (1) |
|
|
125 | (2) |
|
|
127 | (1) |
|
5.6.1 Handlingstiff equations |
|
|
127 | (1) |
|
5.6.2 Handling uncertainty |
|
|
127 | (1) |
|
|
128 | (3) |
|
|
128 | (1) |
|
|
129 | (1) |
|
|
130 | (1) |
|
Chapter 6 Parameter estimation |
|
|
131 | (30) |
|
6.1 Data-Driven Mechanistic Modelling: An Overview |
|
|
131 | (3) |
|
6.1.1 Pre-processing the data |
|
|
133 | (1) |
|
6.1.2 Model identification |
|
|
134 | (1) |
|
6.2 Setting Up An Optimisation Problem |
|
|
134 | (5) |
|
|
135 | (1) |
|
|
135 | (3) |
|
6.2.3 Maximum likelihood estimation |
|
|
138 | (1) |
|
6.3 Algorithms For Optimisation |
|
|
139 | (11) |
|
|
139 | (1) |
|
6.3.2 Gradient-based methods |
|
|
139 | (1) |
|
6.3.3 Direct search methods |
|
|
140 | (3) |
|
6.3.4 Evolutionary algorithms |
|
|
143 | (7) |
|
6.4 POST-Regression Diagnostics |
|
|
150 | (3) |
|
|
150 | (1) |
|
6.4.2 Sensitivity and-robustness of biological models |
|
|
151 | (2) |
|
|
153 | (2) |
|
|
153 | (1) |
|
|
153 | (1) |
|
6.5.3 Choosing a search algorithm |
|
|
154 | (1) |
|
|
154 | (1) |
|
6.5.5 The curse of dimensionality |
|
|
154 | (1) |
|
|
155 | (6) |
|
|
155 | (2) |
|
|
157 | (3) |
|
|
160 | (1) |
|
Chapter 7 Discrete dynamic models: Boolean networks |
|
|
161 | (12) |
|
|
161 | (1) |
|
7.2 Boolean Networks: Transfer Functions |
|
|
162 | (4) |
|
7.2.1 Characterising Boolean network dynamics |
|
|
164 | (1) |
|
7.2.2 Synchronous vs. asynchronous updates |
|
|
165 | (1) |
|
|
166 | (1) |
|
7.3.1 Probabilistic Boolean networks |
|
|
166 | (1) |
|
7.3.2 Logical interaction hypergraphs |
|
|
166 | (1) |
|
7.3.3 Generalised logical networks |
|
|
166 | (1) |
|
|
166 | (1) |
|
|
167 | (1) |
|
|
167 | (1) |
|
|
167 | (6) |
|
|
168 | (1) |
|
|
169 | (1) |
|
|
170 | (3) |
|
Part III Constraint-based Modelling |
|
|
|
Chapter 8 Introduction to constraint-based modelling |
|
|
173 | (28) |
|
8.1 What Are Constraints? |
|
|
174 | (3) |
|
8.1.1 Types of constraints |
|
|
175 | (1) |
|
8.1.2 Mathematical representation of constraints |
|
|
176 | (1) |
|
8.1.3 Why are constraints useful? |
|
|
177 | (1) |
|
8.2 The Stoichiometric Matrix |
|
|
177 | (1) |
|
8.3 Steady-State Mass Balance: Flux Balance Analysis |
|
|
178 | (3) |
|
8.4 The Objective Function |
|
|
181 | (2) |
|
8.4.1 The biomass objective function |
|
|
182 | (1) |
|
8.5 Optimisation To Compute Flux Distribution |
|
|
183 | (2) |
|
|
185 | (2) |
|
8.7 Flux Variability Analysis (FVA) |
|
|
187 | (1) |
|
|
187 | (7) |
|
8.8.1 Blocked reactions and dead-end metabolites |
|
|
189 | (1) |
|
8.8.2 Gaps in metabolic networks |
|
|
190 | (1) |
|
|
191 | (1) |
|
|
191 | (1) |
|
8.8.5 Parsimonious FBA (pFBA) |
|
|
192 | (1) |
|
8.8.6 ATP maintenance fluxes |
|
|
193 | (1) |
|
|
194 | (1) |
|
|
194 | (1) |
|
8.9.2 Objective values vs. flux values |
|
|
194 | (1) |
|
|
195 | (6) |
|
|
195 | (2) |
|
|
197 | (3) |
|
|
200 | (1) |
|
Chapter 9 Extending constraint-based approaches |
|
|
201 | (22) |
|
9.1 Minimisation Of Metabolic Adjustment (MoMA) |
|
|
202 | (2) |
|
9.1.1 Fitting experimentally measured fluxes |
|
|
203 | (1) |
|
9.2 Regulatoryon-Offminimisation (ROOM) |
|
|
204 | (1) |
|
|
205 | (1) |
|
9.3 BI-Level Optimisation |
|
|
205 | (1) |
|
|
205 | (1) |
|
9.4 Integrating Regulatory Information |
|
|
206 | (3) |
|
9.4.1 Embedding regulatory logic Regulatory FBA (rFBA) |
|
|
206 | (1) |
|
9.4.2 Informing metabolic models with omic data |
|
|
207 | (2) |
|
9.4.3 Tissue-specific models |
|
|
209 | (1) |
|
9.5 Compartmentalised Models |
|
|
209 | (1) |
|
9.6 Dynamic Flux Balance Analysis (dFBA) |
|
|
210 | (2) |
|
|
212 | (1) |
|
9.8 Elementary Flux Modes And Extreme Pathways |
|
|
213 | (10) |
|
9.8.1 Computing EFMs and EPs |
|
|
216 | (1) |
|
|
216 | (1) |
|
|
216 | (2) |
|
|
218 | (4) |
|
|
222 | (1) |
|
Chapter 10 Perturbations to metabolic networks |
|
|
223 | (26) |
|
|
224 | (1) |
|
10.1.1 Gene deletions vs. reaction deletions |
|
|
225 | (1) |
|
|
225 | (7) |
|
10.2.1 Exhaustive enumeration |
|
|
226 | (1) |
|
10.2.2 Bi-level optimisation |
|
|
227 | (2) |
|
10.2.3 Fast-SL Massively pruningthe search space |
|
|
229 | (3) |
|
|
232 | (1) |
|
10.3.1 Flux Scanning based on Enforced Objective Flux (FSEOF) |
|
|
232 | (1) |
|
|
233 | (1) |
|
10.5 Evaluating And Ranking Perturbations |
|
|
233 | (1) |
|
10.6 Applications Of Constraint-Based Models |
|
|
234 | (3) |
|
10.6.1 Metabolic engineering |
|
|
235 | (1) |
|
10.6.2 Drug target identification |
|
|
236 | (1) |
|
10.7 Limitations Of Constraint-Based Approaches |
|
|
237 | (2) |
|
10.7.1 Incorrect predictions |
|
|
237 | (2) |
|
|
239 | (1) |
|
10.8.1 Interpreting gene deletion simulations |
|
|
239 | (1) |
|
|
239 | (10) |
|
|
240 | (1) |
|
|
241 | (5) |
|
|
246 | (3) |
|
|
|
Chapter 11 Modelling cellular interactions |
|
|
249 | (26) |
|
11.1 Microbialcommunities |
|
|
249 | (11) |
|
11.1.1 Network-based approaches |
|
|
250 | (5) |
|
11.1.2 Population-based and agent-based approaches |
|
|
255 | (1) |
|
11.1.3 Constraint-based approaches |
|
|
256 | (4) |
|
11.2 Host-Pathogen Interactions (HPIs) |
|
|
260 | (5) |
|
|
260 | (2) |
|
|
262 | (1) |
|
11.2.3 Constraint-based models |
|
|
263 | (2) |
|
|
265 | (1) |
|
|
265 | (10) |
|
|
266 | (1) |
|
|
267 | (7) |
|
|
274 | (1) |
|
Chapter 12 Designing biological circuits |
|
|
275 | (18) |
|
12.1 What Is Synthetic Biology? |
|
|
275 | (2) |
|
12.1.1 From LEGO bricks to biobricks |
|
|
276 | (1) |
|
12.2 Classic Circuit Design Experiments |
|
|
277 | (3) |
|
12.2.1 Designing an oscillator: The repressilator |
|
|
278 | (1) |
|
|
279 | (1) |
|
|
280 | (2) |
|
12.3.1 Exploringthe design space |
|
|
280 | (2) |
|
12.3.2 Systems-theoretic approaches |
|
|
282 | (1) |
|
12.3.3 Automating circuit design |
|
|
282 | (1) |
|
12.4 Design Principles Of Biological Networks |
|
|
282 | (2) |
|
|
283 | (1) |
|
|
283 | (1) |
|
|
284 | (1) |
|
|
284 | (1) |
|
12.5 Computing With Cells |
|
|
284 | (2) |
|
12.5.1 Adleman's classic experiment |
|
|
285 | (1) |
|
12.5.2 Examples of circuits that can compute |
|
|
285 | (1) |
|
|
286 | (1) |
|
|
286 | (1) |
|
|
287 | (6) |
|
|
287 | (1) |
|
|
288 | (4) |
|
|
292 | (1) |
|
Chapter 13 Robustness and evolvability of biological systems |
|
|
293 | (16) |
|
13.1 Robustness In Biological Systems |
|
|
294 | (4) |
|
|
294 | (1) |
|
13.1.2 Hierarchies and protocols |
|
|
295 | (1) |
|
13.1.3 Organising principles |
|
|
296 | (2) |
|
13.2 Genotype Spaces And Genotype Networks |
|
|
298 | (3) |
|
|
298 | (1) |
|
13.2.2 Genotype-phenotype mapping |
|
|
298 | (3) |
|
13.3 Quantifying Robustness And Evolvability |
|
|
301 | (4) |
|
|
305 | (4) |
|
|
305 | (1) |
|
|
306 | (1) |
|
|
307 | (2) |
|
Chapter 14 Epilogue: The road ahead |
|
|
309 | (18) |
|
|
325 | (2) |
Appendix A Introduction to key biological concepts |
|
Appendix B Reconstruction of biological networks |
|
Appendix C Databases for systems biology |
|
Appendix D Software tools compendium |
|
Appendix E MATLAB for systems biology |
|
Index |
|
327 | |