Preface |
|
xiii | |
|
|
1 | (28) |
|
|
1 | (2) |
|
1.2 Correspondence Analysis in a "Nutshell" |
|
|
3 | (1) |
|
|
4 | (4) |
|
1.3.1 Traditional European Food Data |
|
|
4 | (2) |
|
|
6 | (1) |
|
|
6 | (1) |
|
|
7 | (1) |
|
1.4 Symmetrical Versus Asymmetrical Association |
|
|
8 | (2) |
|
|
10 | (2) |
|
1.5.1 The Two-way Contingency Table |
|
|
10 | (1) |
|
1.5.2 The Three-way Contingency Table |
|
|
11 | (1) |
|
1.6 Formal Test of Symmetrical Association |
|
|
12 | (5) |
|
1.6.1 Test of Independence for Two-way Contingency Tables |
|
|
12 | (1) |
|
1.6.2 The Chi-squared Statistic for a Two-way Table |
|
|
13 | (1) |
|
1.6.3 Analysis of the Traditional European Food Data |
|
|
13 | (2) |
|
1.6.4 The Chi-squared Statistic for a Three-way Table |
|
|
15 | (1) |
|
1.6.5 Analysis of the Alligator Data |
|
|
16 | (1) |
|
1.7 Formal Test of Asymmetrical Association |
|
|
17 | (5) |
|
1.7.1 Test of Predictability for Two-way Contingency Tables |
|
|
17 | (1) |
|
1.7.2 The Goodman-Kruskal tau Index |
|
|
17 | (1) |
|
1.7.3 Analysis of the Traditional European Food Data |
|
|
18 | (1) |
|
1.7.4 Test of Predictability for Three-way Contingency Tables |
|
|
19 | (1) |
|
1.7.5 Marcotorchino's Index |
|
|
19 | (1) |
|
1.7.6 Analysis of the Alligator Data |
|
|
20 | (1) |
|
1.7.7 The Gray-Williams Index and Delta Index |
|
|
21 | (1) |
|
1.8 Correspondence Analysis and R |
|
|
22 | (3) |
|
|
25 | (4) |
|
Part I Classical Analysis of Two Categorical Variables |
|
|
29 | (70) |
|
2 Simple Correspondence Analysis |
|
|
31 | (40) |
|
|
31 | (1) |
|
2.2 Reducing Multi-dimensional Space |
|
|
32 | (7) |
|
2.2.1 Profiles Cloud of Points |
|
|
32 | (1) |
|
2.2.2 Profiles for the Traditional European Food Data |
|
|
33 | (1) |
|
2.2.3 Weighted Centred Profiles |
|
|
33 | (6) |
|
2.3 Measuring Symmetric Association |
|
|
39 | (2) |
|
|
39 | (1) |
|
2.3.2 Analysis of the Traditional European Food Data |
|
|
40 | (1) |
|
2.4 Decomposing the Pearson Residual for Nominal Variables |
|
|
41 | (5) |
|
2.4.1 The Generalised SVD of Uij - 1 |
|
|
41 | (3) |
|
2.4.2 SVD of the Pearson Ratio's |
|
|
44 | (1) |
|
2.4.3 GSVD and the Traditional European Food Data |
|
|
44 | (2) |
|
2.5 Constructing a Low-Dimensional Display |
|
|
46 | (4) |
|
2.5.1 Standard Coordinates |
|
|
46 | (1) |
|
2.5.2 Principal Coordinates |
|
|
47 | (3) |
|
2.6 Practicalities of the Low-Dimensional Plot |
|
|
50 | (9) |
|
2.6.1 The Two-Dimensional Correspondence Plot |
|
|
50 | (4) |
|
2.6.2 What is NOT Being Shown in a Two-Dimensional Correspondence Plot? |
|
|
54 | (3) |
|
2.6.3 The Three-Dimensional Correspondence Plot |
|
|
57 | (2) |
|
|
59 | (4) |
|
|
59 | (1) |
|
2.7.2 Isometric Biplots of the Traditional European Food Data |
|
|
60 | (3) |
|
2.7.3 What is NOT Being Shown in a Two-Dimensional Biplot? |
|
|
63 | (1) |
|
2.8 The Case for No Visual Display |
|
|
63 | (1) |
|
2.9 Detecting Statistically Significant Points |
|
|
64 | (5) |
|
2.9.1 Confidence Circles and Ellipses |
|
|
64 | (1) |
|
2.9.2 Confidence Ellipses for the Traditional European Food Data |
|
|
65 | (4) |
|
2.10 Approximate p-values |
|
|
69 | (1) |
|
2.10.1 The Hypothesis Test and its p-value |
|
|
69 | (1) |
|
2.10.2 P-values and the Traditional European Food Data |
|
|
70 | (1) |
|
|
70 | (1) |
|
3 Non-Symmetrical Correspondence Analysis |
|
|
71 | (28) |
|
|
71 | (1) |
|
3.2 Quantifying Asymmetric Association |
|
|
72 | (4) |
|
3.2.1 The Goodman-Kruskal tau Index |
|
|
72 | (1) |
|
3.2.2 The r Index and the Traditional European Food Data |
|
|
72 | (1) |
|
3.2.3 Weighted Centred Column Profile |
|
|
73 | (1) |
|
3.2.4 Profiles of the Traditional European Food Data |
|
|
73 | (3) |
|
3.3 Decomposing πi|j for Nominal Variables |
|
|
76 | (3) |
|
3.3.1 The Generalised SVD of πi|j |
|
|
76 | (1) |
|
3.3.2 GSVD and the Traditional Food Data |
|
|
77 | (2) |
|
3.4 Constructing a Low-Dimensional Display |
|
|
79 | (3) |
|
3.4.1 Standard Coordinates |
|
|
79 | (1) |
|
3.4.2 Principal Coordinates |
|
|
79 | (3) |
|
3.5 Practicalities of the Low-Dimensional Plot |
|
|
82 | (7) |
|
3.5.1 The Two-Dimensional Correspondence Plot |
|
|
82 | (3) |
|
3.5.2 The Three-Dimensional Correspondence Plot |
|
|
85 | (4) |
|
|
89 | (3) |
|
|
89 | (1) |
|
3.6.2 The Column Isometric Biplot for the Traditional Food Data |
|
|
90 | (1) |
|
3.6.3 The Three-Dimensional Biplot |
|
|
91 | (1) |
|
3.7 Detecting Statistically Significant Points |
|
|
92 | (4) |
|
3.7.1 Confidence Circles and Ellipses |
|
|
92 | (1) |
|
3.7.2 Confidence Ellipses for the Traditional Food Data |
|
|
93 | (3) |
|
|
96 | (3) |
|
Part II Ordinal Analysis of Two Categorical Variables |
|
|
99 | (44) |
|
4 Simple Ordinal Correspondence Analysis |
|
|
101 | (24) |
|
|
101 | (1) |
|
4.2 A Simple Correspondence Analysis of the Temperature Data |
|
|
102 | (2) |
|
4.3 On the Mean and Variation of Profiles with Ordered Categories |
|
|
104 | (7) |
|
4.3.1 Profiles of the Temperature Data |
|
|
104 | (1) |
|
|
105 | (2) |
|
4.3.3 On the Mean of the Profiles |
|
|
107 | (1) |
|
4.3.4 On the Variation of the Profiles |
|
|
108 | (1) |
|
4.3.5 Mean and Variation of Profiles for the Temperature Data |
|
|
108 | (3) |
|
4.4 Decomposing the Pearson Residual for Ordinal Variables |
|
|
111 | (4) |
|
4.4.1 The Bivariate Moment Decomposition of Vijk - 1 |
|
|
111 | (2) |
|
4.4.2 BMD and the Temperature Data |
|
|
113 | (2) |
|
4.5 Constructing a Low-Dimensional Display |
|
|
115 | (5) |
|
4.5.1 Standard Coordinates |
|
|
115 | (1) |
|
4.5.2 Principal Coordinates |
|
|
116 | (3) |
|
4.5.3 Practicalities of the Ordered Principal Coordinates |
|
|
119 | (1) |
|
|
120 | (4) |
|
|
120 | (1) |
|
4.6.2 Ordered Column Isometric Biplot |
|
|
120 | (1) |
|
4.6.3 Ordered Row Isometric Biplot |
|
|
120 | (1) |
|
4.6.4 Ordered Isometric Biplots for the Temperature Data |
|
|
121 | (3) |
|
|
124 | (1) |
|
5 Ordered Non-symmetrical Correspondence Analysis |
|
|
125 | (18) |
|
|
125 | (1) |
|
5.2 The Goodman-Kruskal tau Index Revisited |
|
|
126 | (2) |
|
5.3 Decomposing for Ordinal and Nominal Variables |
|
|
128 | (5) |
|
5.3.1 The Hybrid Decomposition of πj|j |
|
|
128 | (3) |
|
5.3.2 Hybrid Decomposition and the Shoplifting Data |
|
|
131 | (2) |
|
5.4 Constructing a Low-Dimensional Display |
|
|
133 | (2) |
|
5.4.1 Standard Coordinates |
|
|
133 | (1) |
|
5.4.2 Principal Coordinates |
|
|
134 | (1) |
|
|
135 | (6) |
|
|
135 | (1) |
|
5.5.2 Column Isometric Biplot |
|
|
135 | (1) |
|
5.5.3 Column Isometric Biplot of the Shoplifting Data |
|
|
135 | (2) |
|
5.5.4 Row Isometric Biplot |
|
|
137 | (1) |
|
5.5.5 Row Isometric Biplot of the Shoplifting Data |
|
|
137 | (3) |
|
5.5.6 Distance Measures and the Row Isometric Biplots |
|
|
140 | (1) |
|
|
141 | (2) |
|
Part III Analysis of Multiple Categorical Variables |
|
|
143 | (58) |
|
6 Multiple Correspondence Analysis |
|
|
145 | (18) |
|
|
145 | (1) |
|
6.2 Crisp Coding and the Indicator Matrix |
|
|
146 | (6) |
|
|
146 | (1) |
|
6.2.2 The Indicator Matrix |
|
|
146 | (1) |
|
6.2.3 Crisp Coding and the Alligator Data |
|
|
147 | (1) |
|
6.2.4 Application of Multiple Correspondence Analysis using the Indicator Matrix |
|
|
148 | (4) |
|
|
152 | (4) |
|
|
156 | (5) |
|
|
156 | (1) |
|
6.4.2 Stacking and the Alligator Data - Lake(Size) × Food |
|
|
156 | (3) |
|
6.4.3 Stacking and the Alligator Data - Food(Size) × Lake |
|
|
159 | (2) |
|
|
161 | (2) |
|
7 Multi-way Correspondence Analysis |
|
|
163 | (38) |
|
|
163 | (1) |
|
1.2 Pearson's Residual Yij - 1 and the Partition of X2 |
|
|
164 | (3) |
|
7.2.1 The Pearson Residual |
|
|
164 | (1) |
|
7.2.2 The Partition of X2 |
|
|
165 | (1) |
|
7.2.3 Partition of X2 for the Alligator Data |
|
|
165 | (2) |
|
7.3 Symmetric Multi-way Correspondence Analysis |
|
|
167 | (8) |
|
7.3.1 Tucker3 Decomposition of yijk - 1 |
|
|
167 | (3) |
|
7.3.2 T3D and the Analysis of Two Variables |
|
|
170 | (1) |
|
7.3.3 On the Choice of the Number of Components |
|
|
171 | (1) |
|
7.3.4 Tucker3 Decomposition of yijk - 1 and the Alligator Data |
|
|
171 | (4) |
|
7.4 Constructing a Low-Dimensional Display |
|
|
175 | (13) |
|
7.4.1 Principal Coordinates |
|
|
175 | (1) |
|
7.4.2 The Interactive Biplot |
|
|
176 | (5) |
|
7.4.3 Column-Tube Interactive Biplot for the Alligator Data |
|
|
181 | (4) |
|
7.4.4 Row Interactive Biplot for the Alligator Data |
|
|
185 | (3) |
|
7.5 The Marcotorchino Residual πi|j,k and the Partition of τM |
|
|
188 | (3) |
|
7.5.1 The Marcotrochino Residual |
|
|
188 | (1) |
|
7.5.2 The Partition of τM |
|
|
189 | (1) |
|
7.5.3 Partition of τM for the Alligator Data |
|
|
190 | (1) |
|
7.6 Non-symmetrical Multi-way Correspondence Analysis |
|
|
191 | (3) |
|
7.6.1 Tucker3 Decomposition of πi|j,k |
|
|
191 | (2) |
|
7.6.2 Tucker3 Decomposition of πi|j,k and the Alligator Data |
|
|
193 | (1) |
|
1.1 Constructing a Low-Dimensional Display |
|
|
194 | (5) |
|
7.7.1 On the Choice of Coordinates |
|
|
194 | (1) |
|
1.1.2 Column-Tube Interactive Biplot for the Alligator Data |
|
|
195 | (4) |
|
|
199 | (2) |
References |
|
201 | (12) |
Author Index |
|
213 | (4) |
Subject Index |
|
217 | |