Preface |
|
xv | |
About the Book |
|
xvii | |
Introduction |
|
1 | (6) |
Part I: Tensor Theory |
|
7 | (186) |
|
|
9 | (16) |
|
|
9 | (1) |
|
1.2 Systems of Different Orders |
|
|
9 | (1) |
|
1.3 Summation Convention Certain Index |
|
|
10 | (1) |
|
|
11 | (1) |
|
|
11 | (1) |
|
|
11 | (3) |
|
|
14 | (1) |
|
1.6 Results on Matrices and Determinants of Systems |
|
|
15 | (3) |
|
1.7 Differentiation of a Determinant |
|
|
18 | (1) |
|
|
19 | (4) |
|
|
23 | (2) |
|
|
25 | (48) |
|
|
25 | (1) |
|
2.2 Scope of Tensor Analysis |
|
|
25 | (2) |
|
2.2.1 n-Dimensional Space |
|
|
26 | (1) |
|
2.3 Transformation of Coordinates in Sn |
|
|
27 | (4) |
|
2.3.1 Properties of Admissible Transformation of Coordinates |
|
|
30 | (1) |
|
2.4 Transformation by Invariance |
|
|
31 | (1) |
|
2.5 Transformation by Covariant Tensor and Contravariant Tensor |
|
|
32 | (2) |
|
2.6 The Tensor Concept: Contravariant and Covariant Tensors |
|
|
34 | (9) |
|
|
34 | (1) |
|
2.6.2 Contravariant Vectors |
|
|
35 | (5) |
|
2.6.3 Tensor of Higher Order |
|
|
40 | (3) |
|
2.6.3.1 Contravariant Tensors of Order Two |
|
|
40 | (1) |
|
2.6.3.2 Covariant Tensor of Order Two |
|
|
41 | (1) |
|
2.6.3.3 Mixed Tensors of Order Two |
|
|
42 | (1) |
|
|
43 | (2) |
|
2.7.1 Equality of Two Tensors of Same Type |
|
|
45 | (1) |
|
2.8 Symmetric and Skew-Symmetric Tensors |
|
|
45 | (6) |
|
|
45 | (1) |
|
2.8.2 Skew-Symmetric Tensors |
|
|
46 | (5) |
|
2.9 Outer Multiplication and Contraction |
|
|
51 | (5) |
|
2.9.1 Outer Multiplication |
|
|
51 | (2) |
|
2.9.2 Contraction of a Tensor |
|
|
53 | (1) |
|
2.9.3 Inner Product of Two Tensors |
|
|
54 | (2) |
|
2.10 Quotient Law of Tensors |
|
|
56 | (2) |
|
2.11 Reciprocal Tensor of a Tensor |
|
|
58 | (2) |
|
2.12 Relative Tensor, Cartesian Tensor, Affine Tensor, and Isotropic Tensors |
|
|
60 | (5) |
|
|
60 | (3) |
|
|
63 | (1) |
|
|
63 | (1) |
|
|
64 | (1) |
|
|
64 | (1) |
|
|
65 | (6) |
|
|
71 | (2) |
|
|
73 | (24) |
|
|
73 | (1) |
|
|
74 | (1) |
|
|
75 | (2) |
|
|
77 | (7) |
|
|
84 | (2) |
|
|
84 | (1) |
|
|
85 | (1) |
|
|
86 | (1) |
|
3.6 Angle Between Two Vectors |
|
|
86 | (2) |
|
3.6.1 Orthogonality of Two Vectors |
|
|
87 | (1) |
|
|
88 | (1) |
|
3.8 Angle Between Two Coordinate Hypersurfaces |
|
|
89 | (6) |
|
|
95 | (2) |
|
|
97 | (46) |
|
|
97 | (1) |
|
|
97 | (13) |
|
4.2.1 Properties of Christoffel Symbols |
|
|
98 | (12) |
|
4.3 Transformation of Christoffel Symbols |
|
|
110 | (3) |
|
4.3.1 Law of Transformation of Christoffel Symbols of 1st Kind |
|
|
110 | (1) |
|
4.3.2 Law of Transformation of Christoffel Symbols of 2nd Kind |
|
|
111 | (2) |
|
4.4 Covariant Differentiation of Tensor |
|
|
113 | (16) |
|
4.4.1 Covariant Derivative of Covariant Tensor |
|
|
114 | (1) |
|
4.4.2 Covariant Derivative of Contravariant Tensor |
|
|
115 | (1) |
|
4.4.3 Covariant Derivative of Tensors of Type (0,2) |
|
|
116 | (2) |
|
4.4.4 Covariant Derivative of Tensors of Type (2,0) |
|
|
118 | (2) |
|
4.4.5 Covariant Derivative of Mixed Tensor of Type (s, r) |
|
|
120 | (1) |
|
4.4.6 Covariant Derivatives of Fundamental Tensors and the Kronecker Delta |
|
|
120 | (2) |
|
4.4.7 Formulas for Covariant Differentiation |
|
|
122 | (1) |
|
4.4.8 Covariant Differentiation of Relative Tensors |
|
|
123 | (6) |
|
4.5 Gradient, Divergence, and Curl |
|
|
129 | (12) |
|
|
130 | (1) |
|
|
130 | (6) |
|
4.5.2.1 Divergence of a Mixed Tensor (1,1) |
|
|
132 | (4) |
|
4.5.3 Laplacian of an Invariant |
|
|
136 | (1) |
|
4.5.4 Curl of a Covariant Vector |
|
|
137 | (4) |
|
|
141 | (2) |
|
|
143 | (34) |
|
|
143 | (1) |
|
5.2 Riemannian-Christoffel Tensor |
|
|
143 | (7) |
|
5.3 Properties of Riemann-Christoffel Tensors |
|
|
150 | (9) |
|
5.3.1 Space of Constant Curvature |
|
|
158 | (1) |
|
5.4 Ricci Tensor, Bianchi Identities, Einstein Tensors |
|
|
159 | (11) |
|
|
159 | (1) |
|
|
160 | (6) |
|
|
166 | (4) |
|
|
170 | (1) |
|
5.6 Riemannian and Euclidean Spaces |
|
|
171 | (4) |
|
|
171 | (3) |
|
|
174 | (1) |
|
|
175 | (2) |
|
6 The e-Systems and the Generalized Kronecker Deltas |
|
|
177 | (16) |
|
|
177 | (1) |
|
|
177 | (4) |
|
6.3 Generalized Kronecker Delta |
|
|
181 | (2) |
|
6.4 Contraction of δijkαβγ |
|
|
183 | (2) |
|
6.5 Application of e-Systems to Determinants and Tensor Characters of Generalized Kronecker Deltas |
|
|
185 | (7) |
|
6.5.1 Curl of Covariant Vector |
|
|
189 | (1) |
|
6.5.2 Vector Product of Two Covariant Vectors |
|
|
190 | (2) |
|
|
192 | (1) |
Part II: Differential Geometry |
|
193 | (204) |
|
7 Curvilinear Coordinates in Space |
|
|
195 | (26) |
|
|
195 | (1) |
|
|
195 | (5) |
|
7.3 Curvilinear Coordinates in E3 |
|
|
200 | (10) |
|
7.3.1 Coordinate Surfaces |
|
|
201 | (1) |
|
|
202 | (3) |
|
|
205 | (1) |
|
|
206 | (1) |
|
7.3.5 Angle Between Two Vectors |
|
|
207 | (3) |
|
7.4 Reciprocal Base Systems |
|
|
210 | (6) |
|
|
216 | (3) |
|
|
219 | (2) |
|
|
221 | (44) |
|
|
221 | (1) |
|
8.2 Intrinsic Differentiation |
|
|
221 | (5) |
|
8.3 Parallel Vector Fields |
|
|
226 | (2) |
|
8.4 Geometry of Space Curves |
|
|
228 | (5) |
|
|
231 | (2) |
|
8.5 Serret-Frenet Formula |
|
|
233 | (19) |
|
|
235 | (17) |
|
8.6 Equations of a Straight Line |
|
|
252 | (2) |
|
|
254 | (8) |
|
|
256 | (2) |
|
|
258 | (4) |
|
|
262 | (3) |
|
9 Intrinsic Geometry of Surfaces |
|
|
265 | (56) |
|
|
265 | (1) |
|
9.2 Curvilinear Coordinates on a Surface |
|
|
265 | (2) |
|
9.3 Intrinsic Geometry: First Fundamental Quadratic Form |
|
|
267 | (5) |
|
9.3.1 Contravariant Metric Tensor |
|
|
270 | (2) |
|
9.4 Angle Between Two Intersecting Curves on a Surface |
|
|
272 | (5) |
|
9.4.1 Pictorial Interpretation |
|
|
274 | (3) |
|
|
277 | (12) |
|
|
289 | (2) |
|
9.7 Parallel Vectors on a Surface |
|
|
291 | (1) |
|
|
292 | (2) |
|
|
293 | (1) |
|
9.9 The Riemannian-Christoffel Tensor and Gaussian Curvature |
|
|
294 | (14) |
|
|
296 | (12) |
|
9.10 The Geodesic Curvature |
|
|
308 | (11) |
|
|
319 | (2) |
|
|
321 | (28) |
|
|
321 | (1) |
|
|
321 | (3) |
|
10.3 The Normal Line to the Surface |
|
|
324 | (5) |
|
|
329 | (3) |
|
10.5 Second Fundamental Form of a Surface |
|
|
332 | (2) |
|
10.5.1 Equivalence of Definition of Tensor bαβ |
|
|
333 | (1) |
|
10.6 The Integrability Condition |
|
|
334 | (3) |
|
10.7 Formulas of Weingarten |
|
|
337 | (2) |
|
10.7.1 Third Fundamental Form |
|
|
338 | (1) |
|
10.8 Equations of Gauss and Codazzi |
|
|
339 | (2) |
|
10.9 Mean and Total Curvatures of a Surface |
|
|
341 | (6) |
|
|
347 | (2) |
|
|
349 | (32) |
|
|
349 | (1) |
|
11.2 Curve on a Surface: Theorem of Meusnier |
|
|
350 | (8) |
|
11.2.1 Theorem of Meusnier |
|
|
353 | (5) |
|
11.3 The Principal Curvatures of a Surface |
|
|
358 | (18) |
|
|
360 | (1) |
|
11.3.2 Lines of Curvature |
|
|
361 | (1) |
|
|
362 | (14) |
|
|
376 | (3) |
|
|
379 | (2) |
|
|
381 | (16) |
|
|
381 | (1) |
|
12.2 Surface of Positive and Negative Curvatures |
|
|
381 | (2) |
|
|
383 | (4) |
|
12.3.1 Computation of aαβ and bαβ |
|
|
383 | (4) |
|
12.4 The Gauss-Bonnet Theorem |
|
|
387 | (4) |
|
12.5 The n-Dimensional Manifolds |
|
|
391 | (3) |
|
|
394 | (1) |
|
|
395 | (2) |
Part III: Analytical Mechanics |
|
397 | (72) |
|
|
399 | (48) |
|
|
399 | (1) |
|
13.2 Newtonian Laws of Motion |
|
|
399 | (2) |
|
13.3 Equations of Motion of Particles |
|
|
401 | (2) |
|
13.4 Conservative Force Field |
|
|
403 | (2) |
|
13.5 Lagrangean Equations of Motion |
|
|
405 | (6) |
|
13.6 Applications of Lagrangean Equations |
|
|
411 | (12) |
|
13.7 Himilton's Principle |
|
|
423 | (4) |
|
13.8 Principle of Least Action |
|
|
427 | (3) |
|
13.9 Generalized Coordinates |
|
|
430 | (2) |
|
13.10 Lagrangean Equations in Generalized Coordinates |
|
|
432 | (6) |
|
13.11 Divergence Theorem, Green's Theorem, Laplacian Operator, and Stoke's Theorem in Tensor Notation |
|
|
438 | (4) |
|
13.12 Hamilton's Canonical Equations |
|
|
442 | (2) |
|
13.12.1 Generalized Momenta |
|
|
443 | (1) |
|
|
444 | (3) |
|
14 Newtonian Law of Gravitations |
|
|
447 | (22) |
|
|
447 | (1) |
|
14.2 Newtonian Laws of Gravitation |
|
|
447 | (4) |
|
|
451 | (2) |
|
|
453 | (1) |
|
14.5 Solution of Poisson's Equation |
|
|
454 | (2) |
|
14.6 The Problem of Two Bodies |
|
|
456 | (6) |
|
14.7 The Problem of Three Bodies |
|
|
462 | (5) |
|
|
467 | (2) |
Appendix A: Answers to Even-Numbered Exercises |
|
469 | (4) |
References |
|
473 | (2) |
Index |
|
475 | |