Muutke küpsiste eelistusi

E-raamat: Introduction to Feedback Control Theory

(Bilkent University, Ankara, Turkey)
  • Formaat: 232 pages
  • Ilmumisaeg: 22-Jan-2019
  • Kirjastus: CRC Press Inc
  • Keel: eng
  • ISBN-13: 9781351437035
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 80,59 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 232 pages
  • Ilmumisaeg: 22-Jan-2019
  • Kirjastus: CRC Press Inc
  • Keel: eng
  • ISBN-13: 9781351437035
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

There are many feedback control books out there, but none of them capture the essence of robust control as well as Introduction to Feedback Control Theory. Written by Hitay Özbay, one of the top researchers in robust control in the world, this book fills the gap between introductory feedback control texts and advanced robust control texts.

Introduction to Feedback Control Theory covers basic concepts such as dynamical systems modeling, performance objectives, the Routh-Hurwitz test, root locus, Nyquist criterion, and lead-lag controllers. It introduces more advanced topics including Kharitanov's stability test, basic loopshaping, stability robustness, sensitivity minimization, time delay systems, H-infinity control, and parameterization of all stabilizing controllers for single input single output stable plants. This range of topics gives students insight into the key issues involved in designing a controller.

Occupying and important place in the field of control theory, Introduction to Feedback Control Theory covers the basics of robust control and incorporates new techniques for time delay systems, as well as classical and modern control. Students can use this as a text for building a foundation of knowledge and as a reference for advanced information and up-to-date techniques
Introduction
1(8)
Feedback Control Systems
1(4)
Mathematical Models
5(4)
Modeling, Uncertainty, and Feedback
9(26)
Finite Dimensional LTI System Models
9(2)
Infinite Dimensional LTI System Models
11(5)
A Flexible Beam
11(1)
Systems with Time Delays
12(2)
Mathematical Model of a Thin Airfoil
14(2)
Linearization of Nonlinear Models
16(4)
Linearization Around an Operating Point
16(1)
Feedback Linearization
17(3)
Modeling Uncertainty
20(7)
Dynamic Uncertainty Description
20(2)
Parametric Uncertainty Transformed to Dynamic Uncertainty
22(4)
Uncertainty from System Identification
26(1)
Why Feedback Control?
27(4)
Disturbance Attenuation
29(1)
Tracking
29(1)
Sensitivity to Plant Uncertainty
30(1)
Exercise Problems
31(4)
Performance Objectives
35(8)
Step Response: Transient Analysis
35(5)
Steady State Analysis
40(2)
Exercise Problems
42(1)
BIBO Stability
43(20)
Norms for Signals and Systems
43(2)
BIBO Stability
45(4)
Feedback System Stability
49(4)
Routh-Hurwitz Stability Test
53(2)
Stability Robustness: Parametric Uncertainty
55(6)
Uncertain Parameters in the Plant
55(2)
Kharitanov's Test for Robust Stability
57(2)
Extensions of Kharitanov's Theorem
59(2)
Exercise Problems
61(2)
Root Locus
63(22)
Root Locus Rules
66(13)
Root Locus Construction
67(3)
Design Examples
70(9)
Complementary Root Locus
79(2)
Exercise Problems
81(4)
Frequency Domain Analysis Techniques
85(16)
Cauchy's Theorem
86(1)
Nyquist Stability Test
87(4)
Stability Margins
91(5)
Stability Margins from Bode Plots
96(3)
Exercise Problems
99(2)
Systems with Time Delays
101(20)
Stability of Delay Systems
103(2)
Pade Approximation of Delays
105(5)
Roots of a Quasi-Polynomial
110(3)
Delay Margin
113(6)
Exercise Problems
119(2)
Lead, Lag, and PID Controllers
121(18)
Lead Controller Design
125(6)
Lag Controller Design
131(2)
Lead-Lag Controller Design
133(2)
PID Controller Design
135(2)
Exercise Problems
137(2)
Principles of Loopshaping
139(16)
Tracking and Noise Reduction Problems
139(5)
Bode's Gain-Phase Relationship
144(2)
Design Example
146(6)
Exercise Problems
152(3)
Robust Stability and Performance
155(36)
Modeling Issues Revisited
155(5)
Unmodeled Dynamics
156(2)
Parametric Uncertainty
158(2)
Stability Robustness
160(6)
A Test for Robust Stability
160(5)
Special Case: Stable Plants
165(1)
Robust Performance
166(4)
Controller Design for Stable Plants
170(8)
Parameterization of all Stabilizing Controllers
170(1)
Design Guidelines for Q(s)
171(7)
Design of H∞ Controllers
178(11)
Problem Statement
178(2)
Spectral Factorization
180(1)
Optimal H∞ Controller
181(5)
Suboptimal H∞ Controllers
186(3)
Exercise Problems
189(2)
Basic State Space Methods
191(18)
State Space Representations
191(2)
State Feedback
193(6)
Pole Placement
194(2)
Linear Quadratic Regulators
196(3)
State Observers
199(1)
Feedback Controllers
200(5)
Observer Plus State Feedback
200(2)
H2 Optimal Controller
202(2)
Parameterization of all Stabilizing Controllers
204(1)
Exercise Problems
205(4)
Bibliography 209(6)
Index 215
Ozbay\, Hitay