Muutke küpsiste eelistusi

E-raamat: Introduction to Flight Testing

Series edited by (MIT), Series edited by (BAE Systems, UK), (Western Michigan University), Series edited by (University of Liverpool, UK), (Ohio State University)
  • Formaat: PDF+DRM
  • Sari: Aerospace Series
  • Ilmumisaeg: 07-May-2021
  • Kirjastus: John Wiley & Sons Inc
  • Keel: eng
  • ISBN-13: 9781118949795
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 103,68 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: PDF+DRM
  • Sari: Aerospace Series
  • Ilmumisaeg: 07-May-2021
  • Kirjastus: John Wiley & Sons Inc
  • Keel: eng
  • ISBN-13: 9781118949795
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Introduction to Flight Testing Introduction to Flight Testing

Provides an introduction to the basic flight testing methods employed on general aviation aircraft and unmanned aerial vehicles

Introduction to Flight Testing provides a concise introduction to the basic flight testing methods employed on general aviation aircraft and unmanned aerial vehicles for courses in aeronautical engineering. There is particular emphasis on the use of modern on-board instruments and inexpensive, off-the-shelf portable devices that make flight testing accessible to nearly any student.

This text presents a clear articulation of standard methods for measuring aircraft performance characteristics. Topics covered include aircraft and instruments, digital data acquisition techniques, flight test planning, the standard atmosphere, uncertainty analysis, level flight performance, airspeed calibration, stall, climb and glide, take-off and landing, level turn, static and dynamic longitudinal stability, lateral-directional stability, and flight testing of unmanned aircraft systems.

Unique to this book is a detailed discussion of digital data acquisition (DAQ) techniques, which are an integral part of modern flight test programs. This treatment includes discussion of the analog-to-digital conversion, sample rate, aliasing, and filtering. These critical details provide the flight test engineer with the insight needed to understand the capabilities and limitations of digital DAQ.

Key features:





Provides an introduction to the basic flight testing methods and instrumentation employed on general aviation aircraft and unmanned aerial vehicles. Includes examples of flight testing on general aviation aircraft such as Cirrus, Diamond, and Cessna aircraft, along with unmanned aircraft vehicles. Suitable for courses on Aircraft Flight Test Engineering.

Introduction to Flight Testing provides resources and guidance for practitioners in the rapidly-developing field of drone performance flight test and the general aviation flight test community.
About the Authors xiii
Series Preface xv
Preface xvii
Acknowledgements xxi
About the Companion Website xxiii
1 Introduction
1(21)
1.1 Case Study: Supersonic Flight in the Bell XS-1
3(6)
1.2 Types of Flight Testing
9(8)
1.2.1 Scientific Research
9(3)
1.2.2 Experimental Flight Test
12(2)
1.2.3 Developmental Test and Evaluation
14(1)
1.2.4 Operational Test and Evaluation
14(1)
1.2.5 Airworthiness Certification
15(2)
1.3 Objectives and Organization of this Book
17(5)
Nomenclature
18(1)
Acronyms and Abbreviations
19(1)
References
19(3)
2 The Flight Environment: Standard Atmosphere
22(14)
2.1 Earth's Atmosphere
23(1)
2.2 Standard Atmosphere Model
24(8)
2.2.1 Hydrostatics
24(1)
2.2.2 Gravitational Acceleration and Altitude Definitions
25(1)
2.2.3 Temperature
26(1)
2.2.4 Viscosity
27(1)
2.2.5 Pressure and Density
28(1)
2.2.6 Operationalizing the Standard Atmosphere
29(1)
2.2.1 Comparison with Experimental Data
30(2)
2.3 Altitudes Used in Aviation
32(4)
Nomenclature
34(1)
Subscripts
34(1)
Acronyms and Abbreviations
35(1)
References
35(1)
3 Aircraft And Flight Test Instrumentation
36(20)
3.1 Traditional Cockpit Instruments
36(6)
3.1.1 Gyroscopic-Based Instruments
38(1)
3.1.2 Pressure-Based Instruments
38(3)
3.1.3 Outside Air Temperature
41(1)
3.1.4 Other Instrumentation
42(1)
3.2 Glass Cockpit Instruments
42(3)
3.3 Flight Test Instrumentation
45(7)
3.3.1 Global Navigation Satellite System
46(3)
3.3.2 Accelerometers
49(1)
3.3.3 Gyroscopes
49(1)
3.3.4 Magnetometers
50(1)
3.3.5 Barometer
51(1)
3.3.6 Fusion of Sensor Data Streams
51(1)
3.4 Summary
52(4)
Nomenclature
54(1)
Subscripts
54(1)
Acronyms and Abbreviations
54(1)
References
55(1)
4 Data Acquisition And Analysis
56(16)
4.1 Temporal and Spectral Analysis
56(5)
4.2 Filtering
61(2)
4.3 Digital Sampling: Bit Depth Resolution and Sample Rate
63(3)
4.4 Aliasing
66(3)
4.5 Flight Testing Example
69(1)
4.6 Summary
69(3)
Nomenclature
70(1)
Subscripts
70(1)
Acronyms and Abbreviations
70(1)
References
71(1)
5 Uncertainty Analysis
72(18)
5.1 Error Theory
73(8)
5.1.1 Types of Errors
73(3)
5.1.2 Statistics of Random Error
76(1)
5.1.3 Sensitivity Analysis and Uncertainty Propagation
77(2)
5.1.4 Overall Uncertainty Estimate
79(1)
5.1.5 Chauvenet's Criterion for Outliers
79(1)
5.1.6 Monte Carlo Simulation
80(1)
5.2 Basic Error Sources in Flight Testing
81(9)
5.2.1 Uncertainty of Flight Test Instrumentation
81(4)
5.2.2 Example: Uncertainty in Density (Traditional Approach)
85(1)
5.2.3 Example: Uncertainty in True Airspeed (Monte Carlo Approach)
86(2)
Nomenclature
88(1)
Subscripts
89(1)
Acronyms and Abbreviations
89(1)
References
89(1)
6 Flight Test Planning
90(17)
6.1 Flight Test Process
90(3)
6.2 Risk Management
93(3)
6.3 Case Study: Accept No Unnecessary Risk
96(1)
6.4 Individual Flight Planning
97(8)
6.4.1 Flight Area and Airspace
98(1)
6.4.2 Weather and NOTAMs
99(1)
6.4.3 Weight and Balance
100(3)
6.4.4 Airplane Pre-Flight
103(2)
6.5 Conclusion
105(2)
Nomenclature
105(1)
Acronyms and Abbreviations
105(1)
References
105(2)
7 Drag Polar Measurement In Level Flight
107(25)
7.1 Theory
107(17)
7.1.1 Drag Polar and Power Required for Level Flight
107(5)
7.1.2 The PIW-VIW Method
112(2)
7.1.3 Internal Combustion Engine Performance
114(5)
7.1.4 Propeller Performance
119(5)
7.2 Flight Testing Procedures
124(1)
7.3 Flight Test Example: Cirrus SR20
125(7)
Nomenclature
127(2)
Acronyms and Abbreviations
129(1)
References
129(3)
8 Airspeed Calibration
132(21)
8.1 Theory
132(6)
8.1.1 True Airspeed
134(1)
8.1.2 Equivalent Airspeed
134(1)
8.1.3 Calibrated Airspeed
135(2)
8.1.4 Indicated Airspeed
137(1)
8.1.5 Summary
137(1)
8.2 Measurement Errors
138(4)
8.2.1 Instrument Error
138(1)
8.2.2 System Lag
138(1)
8.2.3 Position Error
139(3)
8.3 Airspeed Calibration Methods
142(5)
8.3.1 Boom-Mounted Probes
143(1)
8.3.2 Trailing Devices and Pacer Aircraft
143(2)
8.3.3 Ground-Based Methods
145(1)
8.3.4 Global Positioning System Method
145(2)
8.4 Flight Testing Procedures
147(1)
8.5 Flight Test Example: Cirrus SR20
148(5)
Nomenclature
150(1)
Subscripts
151(1)
Acronyms and Abbreviations
151(1)
References
151(2)
9 Climb Performance And Level Acceleration To Measure Excess Power
153(22)
9.1 Theory
153(12)
9.1.1 Steady Climbs
154(6)
9.1.2 Energy Methods
160(5)
9.2 Flight Testing Procedures
165(2)
9.2.1 Direct Measurement of Rate of Climb
165(1)
9.2.2 Measurement of Level Acceleration
166(1)
9.3 Data Analysis
167(1)
9.4 Flight Test Example: Cirrus SR20
168(7)
Nomenclature
172(1)
Subscripts
173(1)
Acronyms and Abbreviations
173(1)
References
174(1)
10 Glide Speed And Distance
175(15)
10.1 Theory
176(7)
10.1.1 Drag Polar
176(3)
10.1.2 Gliding Flight
179(1)
10.1.3 Glide Hodograph
180(1)
10.1.4 Best Glide Condition
181(2)
10.2 Flight Testing Procedures
183(2)
10.3 Data Analysis
185(1)
10.4 Flight Test Example: Cirrus SR20
186(4)
Nomenclature
188(1)
Subscripts
188(1)
Acronyms and Abbreviations
189(1)
References
189(1)
11 Takeoff And Landing
190(15)
11.1 Theory
190(6)
11.1.1 Takeoff Ground Roll
191(2)
11.1.2 Landing Ground Roll
193(1)
11.1.3 Rotation Distance
194(1)
11.1.4 Transition Distance
194(1)
11.1.5 Climb Distance
195(1)
11.1.6 Total Takeoff and Landing Distances
195(1)
11.1.7 Simple Estimations
195(1)
11.2 Measurement Methods
196(1)
11.3 Flight Testing Procedures
197(4)
11.3.1 Standard Flight Procedures
197(2)
11.3.2 Flight Test Procedures
199(1)
11.3.3 Data Acquisition
200(1)
11.3.4 Data Analysis
200(1)
11.4 Flight Test Example: Cessna R182
201(4)
Nomenclature
202(1)
Subscripts
203(1)
Acronyms and Abbreviations
204(1)
References
204(1)
12 Stall Speed
205(19)
12.1 Theory
206(8)
12.1.1 Viscous Boundary Layers
207(1)
12.1.2 Flow Separation
208(1)
12.1.3 Two-Dimensional Stall Characteristics
209(2)
12.1.4 Three-Dimensional Stall Characteristics
211(1)
12.1.5 Stall Control
211(2)
12.1.6 Stall Prediction
213(1)
12.2 Flight Testing Procedures
214(1)
12.2.1 Flight Characteristics
214(2)
12.2.2 Data Acquisition
216(1)
12.3 Data Analysis
217(2)
12.4 Flight Test Example: Cirrus SR20
219(5)
Nomenclature
221(1)
Subscripts
222(1)
Acronyms and Abbreviations
222(1)
References
222(2)
13 Turning Flight
224(14)
13.1 Theory
224(8)
13.2 Flight Testing Procedures
232(3)
13.2.1 Airworthiness Certification
232(1)
13.2.2 Educational Flight Testing
233(1)
13.2.3 Piloting
233(1)
13.2.4 Instrumentation and Data Recording
234(1)
13.3 Flight Test Example: Diamond DA40
235(3)
Nomenclature
236(1)
Subscripts
237(1)
Acronyms and Abbreviations
237(1)
References
237(1)
14 Longitudinal Stability
238(23)
14.1 Static Longitudinal Stability
238(8)
14.1.1 Theory
238(4)
14.1.2 Trim Condition
242(2)
14.1.3 Flight Testing Procedures
244(1)
14.1.4 Flight Test Example: Cirrus SR20
245(1)
14.2 Dynamic Longitudinal Stability
246(15)
14.2.1 Theory
246(8)
14.2.2 Flight Testing Procedures
254(1)
14.2.3 Flight Test Example: Cirrus SR20
255(2)
Nomenclature
257(2)
Subscripts
259(1)
Acronyms and Abbreviations
259(1)
References
259(2)
15 Lateral-Directional Stability
261(16)
15.1 Static Lateral-Directional Stability
261(8)
15.1.1 Theory
261(3)
15.1.2 Directional Stability
264(1)
15.1.3 Lateral Stability
265(1)
15.1.4 Flight Testing Procedures
266(1)
15.1.5 Flight Testing Example: Cirrus SR20
267(2)
15.2 Dynamic Lateral-Directional Stability
269(8)
15.2.1 Theory
269(3)
15.2.2 Flight Testing Procedures
272(1)
15.2.3 Flight Test Example: Cirrus SR20
272(2)
Nomenclature
274(1)
Acronyms and Abbreviations
275(1)
References
275(2)
16 Uav Flight Testing
277(33)
16.1 Overview of Unmanned Aircraft
277(2)
16.2 UAV Design Principles and Features
279(9)
16.2.1 Types of Airframes
280(1)
16.2.2 UAV System Architecture
281(4)
16.2.3 Electric Propulsion
285(1)
16.2.4 Command and Control (C2) Link
286(1)
16.2.5 Autonomy
287(1)
16.3 Flight Regulations
288(1)
16.4 Flight Testing Principles
288(3)
16.4.1 Air Data Instrumentation
289(1)
16.4.2 UAV Flight Test Planning
290(1)
16.4.3 Piloting for UAV Flight Testing
290(1)
16.5 Flight Testing Examples with the Peregrine UAS
291(8)
16.5.1 Overview of the' Peregrine UAS
291(2)
16.5.2 Propulsion System Characterization
293(1)
16.5.3 Specific Excess Power: Level Acceleration and Rate of Climb
294(2)
16.5.4 Glide Flight Tests
296(3)
16.6 Flight Testing Examples with the Avanti UAS
299(6)
16.6.1 Overview of the Avanti UAS
299(2)
16.6.2 Coast-Down Testing for the Drag Polar
301(2)
16.6.3 Radio Range Testing
303(2)
16.6.4 Assessment of Autonomous System Performance
305(1)
16.7 Conclusion
305(5)
Nomenclature
307(1)
Acronyms and Abbreviations
307(1)
References
308(2)
Appendix A Standard Atmosphere Tables 310(3)
Appendix B Useful Constants and Unit Conversion Factors 313(4)
Reference 317(1)
Appendix C Stability and Control Derivatives for a Notional GA Aircraft 318(1)
Reference 319(2)
Index 321
James W. Gregory is an associate professor in the Department of Mechanical and Aerospace Engineering, and Associate Director for UAS of the Aerospace Research Center at The Ohio State University. He received his Bachelor of Aerospace Engineering from Georgia Tech, and masters and doctorate degrees in Aeronautics and Astronautics from Purdue University. His research interests focus on development of pressure-sensitive paint as an advanced measurement technique, drag reduction of bluff body wakes via aerodynamic flow control, and flight testing of unmanned aircraft systems. His work experience includes stints at the US Air Force Research Laboratory Air Vehicles Directorate, the US Air Force Academy, Delta Air Lines, NASA Glenn Research Center, Tohoku University in Japan, and as a Fulbright Scholar at the Technion in Israel. He is an instrument-rated private pilot.

Tianshu Liu is a professor and the director of Applied Aerodynamics Laboratory at Western Michigan University.  He received a Ph.D. in aeronautics and astronautics from Purdue University in 1996.  He was a research scientist at NASA Langley Research Center in 1999-2004.  His research areas are experimental and applied aerodynamics and fluid mechanics.  In particular, he has contributed to image-based measurement techniques for various physical quantities such as surface pressure, temperature/heat-transfer, skin friction, velocity fields, aeroelastic deformation, and distributed and integrated forces.  His topics also include videogrammetry and vision for aerospace applications, flow control, flapping flight, flight vehicle design, turbulence and transition, and flight tests.