Muutke küpsiste eelistusi

E-raamat: Introduction to Fronts in Random Media

  • Formaat - PDF+DRM
  • Hind: 41,98 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book aims to give a user friendly tutorial of an interdisciplinary research topic (fronts or interfaces in random media) to senior undergraduates and beginning grad uate students with basic knowledge of partial differential equations (PDE) and prob ability. The approach taken is semiformal, using elementary methods to introduce ideas and motivate results as much as possible, then outlining how to pursue rigor ous theorems, with details to be found in the references section. Since the topic concerns both differential equations and probability, and proba bility is traditionally a quite technical subject with a heavy measure theoretic com ponent, the book strives to develop a simplistic approach so that students can grasp the essentials of fronts and random media and their applications in a self contained tutorial. The book introduces three fundamental PDEs (the Burgers equation, Hamilton Jacobi equations, and reactiondiffusion equations), analysis of their formulas and front solutions, and related stochastic processes. It builds up tools gradually, so that students are brought to the frontiers of research at a steady pace. A moderate number of exercises are provided to consolidate the concepts and ideas. The main methods are representation formulas of solutions, Laplace meth ods, homogenization, ergodic theory, central limit theorems, large deviation princi ples, variational principles, maximum principles, and Harnack inequalities, among others. These methods are normally covered in separate books on either differential equations or probability. It is my hope that this tutorial will help to illustrate how to combine these tools in solving concrete problems.
Fronts in Homogeneous Media
1(22)
Traveling Fronts of Burgers and Hamilton---Jacobi Equations
5(2)
Traveling Fronts of Reaction-Diffusion Equations
7(4)
Variational Principles of Front Speeds
11(2)
Random Variables and Stochastic Processes
13(5)
Noisy Burgers Fronts and the Central Limit Theorem
18(3)
Exercises
21(2)
Fronts in Periodic Media
23(30)
Periodic Media and Homogenization
23(2)
Reaction---Diffusion Traveling Fronts in Periodic Media
25(3)
Existence of Traveling Waves and Front Propagation
28(7)
KPP Fronts and Periodic Homogenization of HJ Equations
35(9)
Fronts in Multiscale Media
44(4)
Variational Principles, Speed Bounds, and Asymptotics
48(3)
Exercises
51(2)
Fronts in Random Burgers Equations
53(16)
Main Assumptions and Results
53(3)
Hopf---Cole Solutions
56(2)
Asymptotic and Probabilistic Preliminaries
58(1)
Asymptotic Reductions
59(4)
Front Probing and Central Limit Theorem
63(4)
Exercises
67(2)
Fronts and Stochastic Homogenization of Hamilton---Jacobi Equations
69(24)
Convex Hamilton---Jacobi and Variational Formulas
70(3)
Subadditive Ergodic Theorem and Homogenization
73(5)
Unbounded Hamiltonians: Breakdown of Homogenization
78(5)
Normal and Accelerated Fronts in Random Flows
83(3)
Central Limit Theorems and Front Fluctuations
86(4)
Exercises
90(3)
KPP Fronts in Random Media
93(52)
KPP Fronts in Spatially Random Shear Flows
93(15)
KPP Fronts in Temporally Random Shear Flows
108(9)
KPP Fronts in Spatially Random Compressible Flows
117(6)
KPP Fronts in Space---Time Random Incompressible Flows
123(9)
Stochastic Homogenization of Viscous HJ Equations
132(4)
Generalized Fronts, Reactive Systems, and Geometric Models
136(8)
Exercises
144(1)
References 145(12)
Index 157